Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(4): 040308    DOI: 10.1088/1674-1056/20/4/040308
GENERAL Prev   Next  

Feasible schemes for quantum swap gates of optical qubits via cavity QED

Tang Shi-Qing(唐世清), Zhang Deng-Yu(张登玉), Wang Xin-Wen(汪新文), Xie Li-Jun(谢利军), and Gao Feng(高峰)
Department of Physics and Electronic Information Science, and Research Institute of Photoelectricity, Hengyang Normal University, Hengyang 421008, China
Abstract  Feasible schemes for implementing quantum swap gates of both coherent-state qubits and photonic qubits are proposed using a $\Lambda$-type atomic ensemble trapped in a bimodal optical cavity. In both protocols, the decoherence from atomic spontaneous emission is negligible due to the fact that the excited states of the atoms are adiabatically eliminated under large detuning condition and the swap gates can be created in a single step. In our schemes, the required atoms-cavity interaction time decreases with the increase of the number of atoms, which is very important in view of decoherence. The experimental feasibilities of the schemes are also discussed.
Keywords:  swap gate      coherent-state qubits      photonic qubits      fidelity  
Received:  07 July 2010      Revised:  05 December 2010      Accepted manuscript online: 
PACS:  03.67.Lx (Quantum computation architectures and implementations)  
  42.50.-p (Quantum optics)  
  42.50.Pq (Cavity quantum electrodynamics; micromasers)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11004050), the Key Scientific Research Fund of Hunan Provincial Education Department, China (Grant No. 09A013), the Scientific Research Fund of Hunan Provincial Education Department of China (Grant No. 10B013), the Science and Technology Research Foundation of Hunan Province of China (Grant No. 2010FJ4120) and the Science Foundation of Hengyang Normal University, China (Grant No. 09A28).

Cite this article: 

Tang Shi-Qing(唐世清), Zhang Deng-Yu(张登玉), Wang Xin-Wen(汪新文), Xie Li-Jun(谢利军), and Gao Feng(高峰) Feasible schemes for quantum swap gates of optical qubits via cavity QED 2011 Chin. Phys. B 20 040308

[1] Shor P 1994 Proceedings of the 35th Annual Symposium on the Foundations of Computer Science (IEEE Los Alomitos: Computer Society Press CA) pp. 124--134
[2] Grover L K 1998 Phys. Rev. Lett. 80 4329
[3] Tang S Q, Zhang D Y, Xie L J, Zhan X G and Gao F 2009 Chin. Phys. B 18 56
[4] Tang S Q, Zhang D Y, Xie L J, Zhan X G and Gao F 2009 Chin. Phys. Lett. 26 020310
[5] Shao X Q, Chen L and Zhang S 2009 Chin. Phys. B 18 440
[6] Zhang D Y, Tang S Q, Xie L J, Zhan X G, You K M and Gao F 2009 Int. J. Theor. Phys. 48 2685
[7] Cai J W, Fang M F, Zheng X J and Liao X P 2006 J. Mod. Opt. 53 2803
[8] Cai J W, Fang M F, Liao X P and Zheng X J 2006 Chin. Phys. 15 2518
[9] Chen C Y, Feng M and Gao K L 2006 Phys. Rev. A 73 064304
[10] Chen C Y, Feng M, Zhang X L and Gao K L 2006 Phys. Rev. A 73 032344
[11] Barenco A, Deutsch D, Ekert A and Jozsa R 1995 Phys. Rev. Lett. 74 4083
[12] Zeng H S, Wang Q, Fang X M and Kuang L M 2010 Phys. Lett. A 374 2129
[13] Liu J, Wang Q, Kuang L M and Zeng H S 2010 Chin. Phys. B 19 030313
[14] Song K H, Xiang S H, Liu Q and Lu D H 2007 Phys. Rev. A 75 032347
[15] Song K H, Zhou Z W and Guo G C 2005 Phys. Rev. A 71 052310
[16] Song K H 2005 Chin. Phys. 15 286
[17] Raimond J M, Brune M and Haroche S 2001 Rev. Mod. Phys. 73 565
[18] Xiao Y F, Zou X B, Han Z F and Guo G C 2006 Phys. Rev. A 74 044303
[19] Ottaviani C, Rebi'c S, Vitali D and Tombesi P 2006 Phys. Rev. A 73 010301(R)
[20] Lin G W, Zou X B, Ye M Y, Lin X M and Guo G C 2008 Phys. Rev. A 77 032308
[21] Shao X Q, Chen L and Zhang S 2008 J. Phys. B: em At. Mol. Opt. Phys. 41 245502
[22] Guzmán R, Retamal J C, Solano E and Zagury N 2006 Phys. Rev. Lett. 96 010502
[23] Parkins A S, Solano E and Cirac J I 2006 Phys. Rev. Lett. 96 053602
[24] Zheng S B 2007 Opt. Commun. 277 349
[25] Joshi A, Hassan S S and Xiao M 2007 Phys. Lett. A 367 415
[26] Sangouard N, Lacour X, Guérin S and Jauslin H R 2005 Phys. Rev. A 72 062309
[27] Vatan F and Williams C 2004 Phys. Rev. A 69 032315
[28] Zheng S B 2009 Appl. Phys. Lett. 94 154101
[29] Zheng S B, Yang Z B and Xia Y 2010 Phys. Rev. A 81 015804
[30] Wu Y and Yang X X 1997 Phys. Rev. A 56 2443
[31] Wu Y and Yang X X 1997 Phys. Rev. Lett. 78 3086
[32] Shu J, Zou X B, Xiao Y F and Guo G C 2007 Phys. Rev. A 75 044302
[33] Poyatos J F, Cirac J I and Zoller P 1997 Phys. Rev. Lett. 78 390
[34] Zheng X J, Fang M F, Cai J W, Cao S and Liao X P 2006 J. Phys. B: At. Mol. Opt. Phys. 39 4701
[35] Dong Y L, Zou X B, Zhang S L, Yang S, Li C F and Guo G C 2009 J. Mod. Opt. 56 1230
[36] McKeever J, Buck J R, Boozer A D and Kimble H J 2004 Phys. Rev. Lett. 93 143601
[37] Boca A, Miller R, Birnbaum K M, Boozer A D, Mckeever J and Kimble H J 2004 Phys. Rev. Lett. 93 233603 endfootnotesize
[1] Engineering topological state transfer in four-period Su-Schrieffer-Heeger chain
Xi-Xi Bao(包茜茜), Gang-Feng Guo(郭刚峰), and Lei Tan(谭磊). Chin. Phys. B, 2023, 32(2): 020301.
[2] Universal order-parameter and quantum phase transition for two-dimensional q-state quantum Potts model
Yan-Wei Dai(代艳伟), Sheng-Hao Li(李生好), and Xi-Hao Chen(陈西浩). Chin. Phys. B, 2022, 31(7): 070502.
[3] Experimental realization of quantum controlled teleportation of arbitrary two-qubit state via a five-qubit entangled state
Xiao-Fang Liu(刘晓芳), Dong-Fen Li(李冬芬), Yun-Dan Zheng(郑云丹), Xiao-Long Yang(杨小龙), Jie Zhou(周杰), Yu-Qiao Tan(谭玉乔), and Ming-Zhe Liu(刘明哲). Chin. Phys. B, 2022, 31(5): 050301.
[4] Alternative non-Gaussianity measures for quantum states based on quantum fidelity
Cheng Xiang(向成), Shan-Shan Li(李珊珊), Sha-Sha Wen(文莎莎), and Shao-Hua Xiang(向少华). Chin. Phys. B, 2022, 31(3): 030306.
[5] Passively stabilized single-photon interferometer
Hai-Long Liu(刘海龙), Min-Jie Wang(王敏杰), Jia-Xin Bao(暴佳鑫), Chao Liu(刘超), Ya Li(李雅), Shu-Jing Li(李淑静), and Hai Wang(王海). Chin. Phys. B, 2022, 31(11): 110306.
[6] Universal quantum control based on parametric modulation in superconducting circuits
Dan-Yu Li(李丹宇), Ji Chu(储继), Wen Zheng(郑文), Dong Lan(兰栋), Jie Zhao(赵杰), Shao-Xiong Li(李邵雄), Xin-Sheng Tan(谭新生), and Yang Yu(于扬). Chin. Phys. B, 2021, 30(7): 070308.
[7] Controlled quantum teleportation of an unknown single-qutrit state in noisy channels with memory
Shexiang Jiang(蒋社想), Bao Zhao(赵宝), and Xingzhu Liang(梁兴柱). Chin. Phys. B, 2021, 30(6): 060303.
[8] Realization of adiabatic and diabatic CZ gates in superconducting qubits coupled with a tunable coupler
Huikai Xu(徐晖凯), Weiyang Liu(刘伟洋), Zhiyuan Li(李志远), Jiaxiu Han(韩佳秀), Jingning Zhang(张静宁), Kehuan Linghu(令狐克寰), Yongchao Li(李永超), Mo Chen(陈墨), Zhen Yang(杨真), Junhua Wang(王骏华), Teng Ma(马腾), Guangming Xue(薛光明), Yirong Jin(金贻荣), and Haifeng Yu(于海峰). Chin. Phys. B, 2021, 30(4): 044212.
[9] Average fidelity estimation of twirled noisy quantum channel using unitary 2t-design
Linxi Zhang(张林曦), Changhua Zhu(朱畅华), Changxing Pei(裴昌幸). Chin. Phys. B, 2019, 28(1): 010304.
[10] Estimation of photon counting statistics with imperfect detectors
Xiao-Chuan Han(韩晓川), Dong-Wei Zhuang(庄东炜), Yu-Xuan Li(李雨轩), Jun-Feng Song(宋俊峰), Yong-Sheng Zhang(张永生). Chin. Phys. B, 2018, 27(7): 074208.
[11] Identifying the closeness of eigenstates in quantum many-body systems
Hai-bin Li(李海彬), Yang Yang(杨扬), Pei Wang(王沛), Xiao-guang Wang(王晓光). Chin. Phys. B, 2017, 26(8): 080502.
[12] An intermediate state of T7 RNA polymerase provides another pathway of nucleotide selection
Zhan-Feng Wang(王展峰), Yu-Ru Liu(刘玉如), Peng-Ye Wang(王鹏业), Ping Xie(谢平). Chin. Phys. B, 2017, 26(10): 100203.
[13] Fidelity between Gaussian mixed states with quantum state quadrature variances
Hai-Long Zhang(张海龙), Chun Zhou(周淳), Jian-Hong Shi(史建红), Wan-Su Bao(鲍皖苏). Chin. Phys. B, 2016, 25(4): 040304.
[14] Computational investigations on polymerase actions in gene transcription and replication: Combining physical modeling and atomistic simulations
Jin Yu(喻进). Chin. Phys. B, 2016, 25(1): 018706.
[15] Non-Gaussian quantum states generation and robust quantum non-Gaussianity via squeezing field
Tang Xu-Bing (唐绪兵), Gao Fang (高放), Wang Yao-Xiong (王耀雄), Kuang Sen (匡森), Shuang Feng (双丰). Chin. Phys. B, 2015, 24(3): 034208.
No Suggested Reading articles found!