Please wait a minute...
Chin. Phys. B, 2009, Vol. 18(2): 810-814    DOI: 10.1088/1674-1056/18/2/066
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

The study of synchronization in the periodic nonuniform folded waveguide

Xu Ao(徐翱), Wang Wen-Xiang(王文祥), Wei Yan-Yu(魏彦玉), and Gong Yu-Bin(宫玉彬)
National Key Laboratory of High Power Vacuum Electronics, School of Physical Electronics, University of Electronic Science and Technology of China, Chengdu 610054, China
Abstract  The periodic nonuniform folded waveguides are special structures, the physical dimension of which is between the periodic folded waveguide and the tapering period folded waveguide. Therefore, the synchronization between the microwave and the electron beam can be maintained in the whole interaction process and the periods are not tapered. In comparison with the tapering period folded waveguide, the theoretical analysis and the technological requirements for this structure are more convenient. In order to study this structure, the space harmonics are analysed, the conditions to make the m-th space harmonic synchronizing with the electron beam in the whole interaction process are present, and the dispersion curve and the coupling impedance curve are obtained by the simulation software HFSS.
Keywords:  folded waveguide      nonuniform      synchronization      physical dimension  
Received:  07 July 2008      Revised:  17 September 2008      Accepted manuscript online: 
PACS:  84.40.Az (Waveguides, transmission lines, striplines)  
  84.40.Fe (Microwave tubes (e.g., klystrons, magnetrons, traveling-wave, backward-wave tubes, etc.))  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos 60532010 and 60401005).

Cite this article: 

Xu Ao(徐翱), Wang Wen-Xiang(王文祥), Wei Yan-Yu(魏彦玉), and Gong Yu-Bin(宫玉彬) The study of synchronization in the periodic nonuniform folded waveguide 2009 Chin. Phys. B 18 810

[1] Diffusive field coupling-induced synchronization between neural circuits under energy balance
Ya Wang(王亚), Guoping Sun(孙国平), and Guodong Ren(任国栋). Chin. Phys. B, 2023, 32(4): 040504.
[2] Hopf bifurcation and phase synchronization in memristor-coupled Hindmarsh-Rose and FitzHugh-Nagumo neurons with two time delays
Zhan-Hong Guo(郭展宏), Zhi-Jun Li(李志军), Meng-Jiao Wang(王梦蛟), and Ming-Lin Ma(马铭磷). Chin. Phys. B, 2023, 32(3): 038701.
[3] Influence of coupling asymmetry on signal amplification in a three-node motif
Xiaoming Liang(梁晓明), Chao Fang(方超), Xiyun Zhang(张希昀), and Huaping Lü(吕华平). Chin. Phys. B, 2023, 32(1): 010504.
[4] Power-law statistics of synchronous transition in inhibitory neuronal networks
Lei Tao(陶蕾) and Sheng-Jun Wang(王圣军). Chin. Phys. B, 2022, 31(8): 080505.
[5] Effect of astrocyte on synchronization of thermosensitive neuron-astrocyte minimum system
Yi-Xuan Shan(单仪萱), Hui-Lan Yang(杨惠兰), Hong-Bin Wang(王宏斌), Shuai Zhang(张帅), Ying Li(李颖), and Gui-Zhi Xu(徐桂芝). Chin. Phys. B, 2022, 31(8): 080507.
[6] Multi-target ranging using an optical reservoir computing approach in the laterally coupled semiconductor lasers with self-feedback
Dong-Zhou Zhong(钟东洲), Zhe Xu(徐喆), Ya-Lan Hu(胡亚兰), Ke-Ke Zhao(赵可可), Jin-Bo Zhang(张金波),Peng Hou(侯鹏), Wan-An Deng(邓万安), and Jiang-Tao Xi(习江涛). Chin. Phys. B, 2022, 31(7): 074205.
[7] Synchronization of nanowire-based spin Hall nano-oscillators
Biao Jiang(姜彪), Wen-Jun Zhang(张文君), Mehran Khan Alam, Shu-Yun Yu(于淑云), Guang-Bing Han(韩广兵), Guo-Lei Liu(刘国磊), Shi-Shen Yan(颜世申), and Shi-Shou Kang(康仕寿). Chin. Phys. B, 2022, 31(7): 077503.
[8] MOS-based model of four-transistor CMOS image sensor pixels for photoelectric simulation
Bing Zhang(张冰), Congzhen Hu(胡从振), Youze Xin(辛有泽), Yaoxin Li(李垚鑫), Zhuoqi Guo(郭卓奇), Zhongming Xue(薛仲明), Li Dong(董力), Shanzhe Yu(于善哲), Xiaofei Wang(王晓飞), Shuyu Lei(雷述宇), and Li Geng(耿莉). Chin. Phys. B, 2022, 31(5): 058503.
[9] Synchronization in multilayer networks through different coupling mechanisms
Xiang Ling(凌翔), Bo Hua(华博), Ning Guo(郭宁), Kong-Jin Zhu(朱孔金), Jia-Jia Chen(陈佳佳), Chao-Yun Wu(吴超云), and Qing-Yi Hao(郝庆一). Chin. Phys. B, 2022, 31(4): 048901.
[10] Propagation of terahertz waves in nonuniform plasma slab under "electromagnetic window"
Hao Li(李郝), Zheng-Ping Zhang(张正平), and Xin Yang (杨鑫). Chin. Phys. B, 2022, 31(3): 035202.
[11] Explosive synchronization: From synthetic to real-world networks
Atiyeh Bayani, Sajad Jafari, and Hamed Azarnoush. Chin. Phys. B, 2022, 31(2): 020504.
[12] Collective behavior of cortico-thalamic circuits: Logic gates as the thalamus and a dynamical neuronal network as the cortex
Alireza Bahramian, Sajjad Shaukat Jamal, Fatemeh Parastesh, Kartikeyan Rajagopal, and Sajad Jafari. Chin. Phys. B, 2022, 31(2): 028901.
[13] Measure synchronization in hybrid quantum-classical systems
Haibo Qiu(邱海波), Yuanjie Dong(董远杰), Huangli Zhang(张黄莉), and Jing Tian(田静). Chin. Phys. B, 2022, 31(12): 120503.
[14] Finite-time complex projective synchronization of fractional-order complex-valued uncertain multi-link network and its image encryption application
Yong-Bing Hu(胡永兵), Xiao-Min Yang(杨晓敏), Da-Wei Ding(丁大为), and Zong-Li Yang(杨宗立). Chin. Phys. B, 2022, 31(11): 110501.
[15] Finite-time synchronization of uncertain fractional-order multi-weighted complex networks with external disturbances via adaptive quantized control
Hongwei Zhang(张红伟), Ran Cheng(程然), and Dawei Ding(丁大为). Chin. Phys. B, 2022, 31(10): 100504.
No Suggested Reading articles found!