Please wait a minute...
Chin. Phys. B, 2009, Vol. 18(11): 4662-4666    DOI: 10.1088/1674-1056/18/11/009
GENERAL Prev   Next  

Entanglement evolution of a two-qubit system with decay beyond the rotating-wave approximation

Yang Qing(杨青)a), Yang Ming(杨名)a), Li Da-Chuang(李大创)a), and Cao Zhuo-Liang(曹卓良)b)
a Key Laboratory of Opto-electronic Information Acquisition and Manipulation (Ministry of Education), School of Physics & Material Science, Anhui University, Hefei 230039, China; b Department of Physics, Hefei Teachers College, Hefei 230061, China
Abstract  The entanglement property of two identical atoms, initially entangled in Bell states, coupled to a single-mode cavity is considered. Based on the reduced non-perturbative quantum master equation method, the entanglement evolution of the two atoms with decay is investigated beyond the conventional rotating-wave approximation. We show that the counter-rotating wave terms, usually neglected, have a great influence on the disentanglement behaviour of the system. The phenomena of entanglement sudden death and entanglement sudden birth will occur. In addition, we show that the entanglement can be strengthened by introducing the dipole--dipole interaction of the two atoms.
Keywords:  quantum entanglement      beyond rotating-wave approximation  
Received:  25 February 2009      Revised:  27 March 2009      Accepted manuscript online: 
PACS:  03.65.Ud (Entanglement and quantum nonlocality)  
  03.67.Lx (Quantum computation architectures and implementations)  
  03.67.Mn (Entanglement measures, witnesses, and other characterizations)  
  42.50.Dv (Quantum state engineering and measurements)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos 60678022 and 10704001), the Specialized Research Fund for the Doctoral Program of Higher Education (Grant No 20060357008), Anhui Provincial Natural Science Foundation of China (Grant No 070412060), the Key Program of the Education Department of Anhui Province of China (Grant No KJ2008A28ZC) and Anhui Key Laboratory of Information Materials and Devices (Anhui University of China).

Cite this article: 

Yang Qing(杨青), Yang Ming(杨名), Li Da-Chuang(李大创), and Cao Zhuo-Liang(曹卓良) Entanglement evolution of a two-qubit system with decay beyond the rotating-wave approximation 2009 Chin. Phys. B 18 4662

[1] Entanglement and thermalization in the extended Bose-Hubbard model after a quantum quench: A correlation analysis
Xiao-Qiang Su(苏晓强), Zong-Ju Xu(许宗菊), and You-Quan Zhao(赵有权). Chin. Phys. B, 2023, 32(2): 020506.
[2] Characterizing entanglement in non-Hermitian chaotic systems via out-of-time ordered correlators
Kai-Qian Huang(黄恺芊), Wei-Lin Li(李蔚琳), Wen-Lei Zhao(赵文垒), and Zhi Li(李志). Chin. Phys. B, 2022, 31(9): 090301.
[3] Nonreciprocal coupling induced entanglement enhancement in a double-cavity optomechanical system
Yuan-Yuan Liu(刘元元), Zhi-Ming Zhang(张智明), Jun-Hao Liu(刘军浩), Jin-Dong Wang(王金东), and Ya-Fei Yu(於亚飞). Chin. Phys. B, 2022, 31(9): 094203.
[4] Bright 547-dimensional Hilbert-space entangled resource in 28-pair modes biphoton frequency comb from a reconfigurable silicon microring resonator
Qilin Zheng(郑骑林), Jiacheng Liu(刘嘉成), Chao Wu(吴超), Shichuan Xue(薛诗川), Pingyu Zhu(朱枰谕), Yang Wang(王洋), Xinyao Yu(于馨瑶), Miaomiao Yu(余苗苗), Mingtang Deng(邓明堂), Junjie Wu(吴俊杰), and Ping Xu(徐平). Chin. Phys. B, 2022, 31(2): 024206.
[5] Influences of spin-orbit interaction on quantum speed limit and entanglement of spin qubits in coupled quantum dots
M Bagheri Harouni. Chin. Phys. B, 2021, 30(9): 090301.
[6] Nonlocal advantage of quantum coherence and entanglement of two spins under intrinsic decoherence
Bao-Min Li(李保民), Ming-Liang Hu(胡明亮), and Heng Fan(范桁). Chin. Phys. B, 2021, 30(7): 070307.
[7] Entanglement properties of GHZ and W superposition state and its decayed states
Xin-Feng Jin(金鑫锋), Li-Zhen Jiang(蒋丽珍), and Xiao-Yu Chen(陈小余). Chin. Phys. B, 2021, 30(6): 060301.
[8] Quantifying entanglement in terms of an operational way
Deng-Hui Yu(于登辉) and Chang-Shui Yu(于长水). Chin. Phys. B, 2021, 30(2): 020302.
[9] Reversion of weak-measured quantum entanglement state
Shao-Jiang Du(杜少将), Yonggang Peng(彭勇刚), Hai-Ran Feng(冯海冉), Feng Han(韩峰), Lian-Wu Yang(杨连武), Yu-Jun Zheng(郑雨军). Chin. Phys. B, 2020, 29(7): 074202.
[10] Qubit movement-assisted entanglement swapping
Sare Golkar, Mohammad Kazem Tavassoly, Alireza Nourmandipour. Chin. Phys. B, 2020, 29(5): 050304.
[11] Quantum speed limit time and entanglement in a non-Markovian evolution of spin qubits of coupled quantum dots
M. Bagheri Harouni. Chin. Phys. B, 2020, 29(12): 124203.
[12] Protecting the entanglement of two-qubit over quantum channels with memory via weak measurement and quantum measurement reversal
Mei-Jiao Wang(王美姣), Yun-Jie Xia(夏云杰), Yang Yang(杨阳), Liao-Zhen Cao(曹连振), Qin-Wei Zhang(张钦伟), Ying-De Li(李英德), and Jia-Qiang Zhao(赵加强). Chin. Phys. B, 2020, 29(11): 110307.
[13] Hidden Anderson localization in disorder-free Ising–Kondo lattice
Wei-Wei Yang(杨薇薇), Lan Zhang(张欄), Xue-Ming Guo(郭雪明), and Yin Zhong(钟寅)†. Chin. Phys. B, 2020, 29(10): 107301.
[14] Geometrical quantum discord and negativity of two separable and mixed qubits
Tang-Kun Liu(刘堂昆), Fei Liu(刘飞), Chuan-Jia Shan(单传家), Ji-Bing Liu(刘继兵). Chin. Phys. B, 2019, 28(9): 090304.
[15] Atom interferometers with weak-measurement path detectors and their quantum mechanical analysis
Zhi-Yuan Li(李志远). Chin. Phys. B, 2019, 28(6): 060301.
No Suggested Reading articles found!