Please wait a minute...
Chin. Phys. B, 2008, Vol. 17(4): 1242-1247    DOI: 10.1088/1674-1056/17/4/016
CLASSICAL AREAS OF PHENOMENOLOGY Prev   Next  

Analytic solutions for degenerate Raman-coupled model

Zhang Zhi-Ming(张智明) and Yu Ya-Fei(於亚飞)
Laboratory of Photonic Information Technology, School of Information and Photoelectronic Science & Engineering, South China Normal University, Guangzhou 510006, China
Abstract  The Raman-coupled interaction between an atom and a single mode of a cavity field is studied. For the cases in which a light field is initially in a coherent state and in a thermal state separately, we have derived the analytic expressions for the time evolutions of atomic population difference $W$, modulus $B$ of the Bloch vector, and entropy $E$. We find that the time evolutions of these quantities are periodic with a period of $\pi $. The maxima of $W$ and $B$ appear at the scaled interaction time points $\tau = k\pi (k = 0,1,2,\ldots)$. At these time points, $E = 0$, which shows that the atom and the field are not entangled. Between these time points, $E \ne 0$, which means that the atom and the field are entangled. When the field is initially in a coherent state, near the maxima, the envelope of $W$ is a Gaussian function with a variance of $1 /{\left( {4\bar {n}} \right)}$ ($\bar {n}$ is the mean number of photons). Under the envelope, $W$ oscillates at a frequency of $\bar {n} / \pi $. When the field is initially in a thermal state, near the maxima, $W$ is a Lorentz function with a width of $1/ \bar {n}$.
Keywords:  Raman-coupled model      atomic dynamics      entropy      entanglement  
Received:  28 June 2007      Revised:  14 August 2007      Accepted manuscript online: 
PACS:  42.50.Ar  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos 60578055 and 10404007).

Cite this article: 

Zhang Zhi-Ming(张智明) and Yu Ya-Fei(於亚飞) Analytic solutions for degenerate Raman-coupled model 2008 Chin. Phys. B 17 1242

[1] Asymmetric image encryption algorithm based ona new three-dimensional improved logistic chaotic map
Guo-Dong Ye(叶国栋), Hui-Shan Wu(吴惠山), Xiao-Ling Huang(黄小玲), and Syh-Yuan Tan. Chin. Phys. B, 2023, 32(3): 030504.
[2] Unified entropy entanglement with tighter constraints on multipartite systems
Qi Sun(孙琪), Tao Li(李陶), Zhi-Xiang Jin(靳志祥), and Deng-Feng Liang(梁登峰). Chin. Phys. B, 2023, 32(3): 030304.
[3] Entanglement and thermalization in the extended Bose-Hubbard model after a quantum quench: A correlation analysis
Xiao-Qiang Su(苏晓强), Zong-Ju Xu(许宗菊), and You-Quan Zhao(赵有权). Chin. Phys. B, 2023, 32(2): 020506.
[4] Transformation relation between coherence and entanglement for two-qubit states
Qing-Yun Zhou(周晴云), Xiao-Gang Fan(范小刚), Fa Zhao(赵发), Dong Wang(王栋), and Liu Ye(叶柳). Chin. Phys. B, 2023, 32(1): 010304.
[5] Quantum properties of nonclassical states generated by an optomechanical system with catalytic quantum scissors
Heng-Mei Li(李恒梅), Bao-Hua Yang(杨保华), Hong-Chun Yuan(袁洪春), and Ye-Jun Xu(许业军). Chin. Phys. B, 2023, 32(1): 014202.
[6] Nonreciprocal coupling induced entanglement enhancement in a double-cavity optomechanical system
Yuan-Yuan Liu(刘元元), Zhi-Ming Zhang(张智明), Jun-Hao Liu(刘军浩), Jin-Dong Wang(王金东), and Ya-Fei Yu(於亚飞). Chin. Phys. B, 2022, 31(9): 094203.
[7] Configurational entropy-induced phase transition in spinel LiMn2O4
Wei Hu(胡伟), Wen-Wei Luo(罗文崴), Mu-Sheng Wu(吴木生), Bo Xu(徐波), and Chu-Ying Ouyang(欧阳楚英). Chin. Phys. B, 2022, 31(9): 098202.
[8] Characterizing entanglement in non-Hermitian chaotic systems via out-of-time ordered correlators
Kai-Qian Huang(黄恺芊), Wei-Lin Li(李蔚琳), Wen-Lei Zhao(赵文垒), and Zhi Li(李志). Chin. Phys. B, 2022, 31(9): 090301.
[9] Direct measurement of two-qubit phononic entangled states via optomechanical interactions
A-Peng Liu(刘阿鹏), Liu-Yong Cheng(程留永), Qi Guo(郭奇), Shi-Lei Su(苏石磊), Hong-Fu Wang(王洪福), and Shou Zhang(张寿). Chin. Phys. B, 2022, 31(8): 080307.
[10] Physical aspects of magnetized Jeffrey nanomaterial flow with irreversibility analysis
Fazal Haq, Muhammad Ijaz Khan, Sami Ullah Khan, Khadijah M Abualnaja, and M A El-Shorbagy. Chin. Phys. B, 2022, 31(8): 084703.
[11] Purification in entanglement distribution with deep quantum neural network
Jin Xu(徐瑾), Xiaoguang Chen(陈晓光), Rong Zhang(张蓉), and Hanwei Xiao(肖晗微). Chin. Phys. B, 2022, 31(8): 080304.
[12] Robustness measurement of scale-free networks based on motif entropy
Yun-Yun Yang(杨云云), Biao Feng(冯彪), Liao Zhang(张辽), Shu-Hong Xue(薛舒红), Xin-Lin Xie(谢新林), and Jian-Rong Wang(王建荣). Chin. Phys. B, 2022, 31(8): 080201.
[13] Robustness of two-qubit and three-qubit states in correlated quantum channels
Zhan-Yun Wang(王展云), Feng-Lin Wu(吴风霖), Zhen-Yu Peng(彭振宇), and Si-Yuan Liu(刘思远). Chin. Phys. B, 2022, 31(7): 070302.
[14] Thermodynamic properties of two-dimensional charged spin-1/2 Fermi gases
Jia-Ying Yang(杨家营), Xu Liu(刘旭), Ji-Hong Qin(秦吉红), and Huai-Ming Guo(郭怀明). Chin. Phys. B, 2022, 31(6): 060504.
[15] Thermodynamic effects of Bardeen black hole surrounded by perfect fluid dark matter under general uncertainty principle
Zhenxiong Nie(聂振雄), Yun Liu(刘芸), Juhua Chen(陈菊华), and Yongjiu Wang(王永久). Chin. Phys. B, 2022, 31(5): 050401.
No Suggested Reading articles found!