Please wait a minute...
Chinese Physics, 2005, Vol. 14(11): 2352-2359    DOI: 10.1088/1009-1963/14/11/036
CROSS DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Structural and electrical properties of SrTiO3 thin films as insulator of metal--ferroelectric--insulator--semiconductor (MFIS) structures

Ma Jian-Hua (马建华), Meng Xiang-Jian (孟祥建), Lin Tie (林铁), Liu Shi-Jian (刘世建), Zhang Xiao-Dong (张晓东), Sun Jing-Lan (孙璟兰), Chu Jun-Hao (褚君浩)
National Laboratory for Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China
Abstract  SrTiO3 (STO) thin films were deposited on p-Si(100) substrates at various substrate temperatures from 300℃ to 700℃ by radio frequency (RF) magnetron sputtering technique. Their structure and electrical properties were investigated. It was found that the transition from amorphous phase to polycrystalline phase occurred at the substrate temperatures 300--400℃. Their crystallinity became better when the substrate temperatures further increased. The dielectric and leakage current measurements were carried out by using the Si/STO/Pt metal--insulator--semiconductor (MIS) structures at room temperature. It was found that the fixed charge density decreased and both the interface trap density and the dielectric constant increased when the substrate temperatures were increased. The leakage current mechanisms for STO MIS structures with STO films prepared at 700℃ followed the space charge limited current (SCLC) under the low applied electric field and the Poole--Frenkel emission under the high one. In addition, the resistivity for films prepared at 700℃ was higher than 1011 $\Omega\cdot$cm under the voltage lower than 10V (corresponding to the electric field of $1.54\times$ 103kV$\cdot$cm-1). It suggested that the STO films prepared at 700℃ were suitable for acting as the insulator of metal--ferroelectric--insulator--semiconductor (MFIS) structures.
Keywords:  substrate temperatures      RF magnetron sputtering      electrical properties      SrTiO3 thin films  
Received:  16 December 2004      Revised:  12 May 2005      Accepted manuscript online: 
PACS:  68.55.-a (Thin film structure and morphology)  
  73.61.Ng (Insulators)  
  78.30.Hv (Other nonmetallic inorganics)  
  78.66.Nk (Insulators)  
  73.40.Qv (Metal-insulator-semiconductor structures (including semiconductor-to-insulator))  
  77.22.Ch (Permittivity (dielectric function))  
Fund: Project supported by National Natural Science Foundation (Grant Nos 60221502 and 60223006) and Shanghai R&D Foundation for Applied Materials (Grant No 0316).

Cite this article: 

Ma Jian-Hua (马建华), Meng Xiang-Jian (孟祥建), Lin Tie (林铁), Liu Shi-Jian (刘世建), Zhang Xiao-Dong (张晓东), Sun Jing-Lan (孙璟兰), Chu Jun-Hao (褚君浩) Structural and electrical properties of SrTiO3 thin films as insulator of metal--ferroelectric--insulator--semiconductor (MFIS) structures 2005 Chinese Physics 14 2352

[1] Effects of preparation parameters on growth and properties of β-Ga2O3 film
Zi-Hao Chen(陈子豪), Yong-Sheng Wang(王永胜), Ning Zhang(张宁), Bin Zhou(周兵), Jie Gao(高洁), Yan-Xia Wu(吴艳霞), Yong Ma(马永), Hong-Jun Hei(黑鸿君), Yan-Yan Shen(申艳艳), Zhi-Yong He(贺志勇), and Sheng-Wang Yu(于盛旺). Chin. Phys. B, 2023, 32(1): 017301.
[2] Optical and electrical properties of BaSnO3 and In2O3 mixed transparent conductive films deposited by filtered cathodic vacuum arc technique at room temperature
Jian-Ke Yao(姚建可) and Wen-Sen Zhong(钟文森). Chin. Phys. B, 2023, 32(1): 018101.
[3] Slight Co-doping tuned magnetic and electric properties on cubic BaFeO3 single crystal
Shijun Qin(覃湜俊), Bowen Zhou(周博文), Zhehong Liu(刘哲宏), Xubin Ye(叶旭斌), Xueqiang Zhang(张雪强), Zhao Pan(潘昭), and Youwen Long(龙有文). Chin. Phys. B, 2022, 31(9): 097503.
[4] Radiation effects of 50-MeV protons on PNP bipolar junction transistors
Yuan-Ting Huang(黄垣婷), Xiu-Hai Cui(崔秀海), Jian-Qun Yang(杨剑群), Tao Ying(应涛), Xue-Qiang Yu(余雪强), Lei Dong(董磊), Wei-Qi Li(李伟奇), and Xing-Ji Li(李兴冀). Chin. Phys. B, 2022, 31(2): 028502.
[5] Achieving high-performance multilayer MoSe2 photodetectors by defect engineering
Jintao Hong(洪锦涛), Fengyuan Zhang(张丰源), Zheng Liu(刘峥), Jie Jiang(蒋杰), Zhangting Wu(吴章婷), Peng Zheng(郑鹏), Hui Zheng(郑辉), Liang Zheng(郑梁), Dexuan Huo(霍德璇), Zhenhua Ni(倪振华), and Yang Zhang(张阳). Chin. Phys. B, 2021, 30(8): 087801.
[6] Characterization of low-resistance ohmic contacts to heavily carbon-doped n-type InGaAsBi films treated by rapid thermal annealing
Shu-Xing Zhou(周书星), Li-Kun Ai(艾立鹍), Ming Qi(齐鸣), An-Huai Xu(徐安怀), Jia-Sheng Yan(颜家圣), Shu-Sen Li(李树森), and Zhi Jin(金智). Chin. Phys. B, 2021, 30(2): 027304.
[7] RF magnetron sputtering induced the perpendicular magnetic anisotropy modification in Pt/Co based multilayers
Runze Li(李润泽), Yucai Li(李予才), Yu Sheng(盛宇), and Kaiyou Wang(王开友). Chin. Phys. B, 2021, 30(2): 028506.
[8] Suppression of ion migration in perovskite materials by pulse-voltage method
Xue-Yan Wang(王雪岩), Hu Wang(王虎), Luo-Ran Chen(陈烙然), Yu-Chuan Shao(邵宇川), and Jian-Da Shao(邵建达). Chin. Phys. B, 2021, 30(11): 118104.
[9] Understanding of impact of carbon doping on background carrier conduction in GaN
Zhenxing Liu(刘振兴), Liuan Li(李柳暗), Jinwei Zhang(张津玮), Qianshu Wu(吴千树), Yapeng Wang(王亚朋), Qiuling Qiu(丘秋凌), Zhisheng Wu(吴志盛), and Yang Liu(刘扬). Chin. Phys. B, 2021, 30(10): 107201.
[10] Electrical properties of m×n cylindrical network
Zhi-Zhong Tan(谭志中), Zhen Tan(谭震). Chin. Phys. B, 2020, 29(8): 080503.
[11] Influence of Zr50Cu50 thin film metallic glass as buffer layer on the structural and optoelectrical properties of AZO films
Bao-Qing Zhang(张宝庆), Gao-Peng Liu(刘高鹏), Hai-Tao Zong(宗海涛), Li-Ge Fu(付丽歌), Zhi-Fei Wei(魏志飞), Xiao-Wei Yang(杨晓炜), Guo-Hua Cao(曹国华). Chin. Phys. B, 2020, 29(3): 037303.
[12] Structural and electrical properties of carbon-ion-implanted ultrananocrystalline diamond films
Hui Xu(徐辉), Jian-Jun Liu(刘建军), Hai-Tao Ye(叶海涛), D J Coathup, A V Khomich, Xiao-Jun Hu(胡晓君). Chin. Phys. B, 2018, 27(9): 096104.
[13] Transport properties of mixing conduction in CaF2 nanocrystals under high pressure
Ting-Jing Hu(胡廷静), Xiao-Yan Cui(崔晓岩), Jing-Shu Wang(王婧姝), Jun-Kai Zhang(张俊凯), Xue-Fei Li(李雪飞), Jing-Hai Yang(杨景海), Chun-Xiao Gao(高春晓). Chin. Phys. B, 2018, 27(1): 016401.
[14] Degradation behavior of electrical properties of GaInAs (1.0 eV) and GaInAs (0.7 eV) sub-cells of IMM4J solar cells under 1-MeV electron irradiation
Yan-Qing Zhang(张延清), Ming-Xue Huo(霍明学), Yi-Yong Wu(吴宜勇), Cheng-Yue Sun(孙承月), Hui-Jie Zhao(赵慧杰), Hong-Bin Geng(耿洪滨), Shuai Wang(王帅), Ru-Bin Liu(刘如彬), Qiang Sun(孙强). Chin. Phys. B, 2017, 26(8): 088801.
[15] High pressure electrical transport behavior in SrF2 nanoplates
Xiao-Yan Cui(崔晓岩), Ting-Jing Hu(胡廷静), Jing-Shu Wang(王婧姝), Jun-Kai Zhang(张俊凯), Xue-Fei Li(李雪飞), Jing-Hai Yang(杨景海), Chun-Xiao Gao(高春晓). Chin. Phys. B, 2017, 26(4): 046401.
No Suggested Reading articles found!