|
|
Coulomb-dominated oscillations in a graphene quantum Hall Fabry-Pérot interferometer |
Guan-Qun Zhang(张冠群)1, Li Lin(林立)2, Hailin Peng(彭海琳)2, Zhongfan Liu(刘忠范)2, Ning Kang(康宁)1, Hong-Qi Xu(徐洪起)1,3 |
1 Beijing Key Laboratory of Quantum Devices, Key Laboratory for the Physics and Chemistry of Nanodevices and Department of Electronics, Peking University, Beijing 100871, China;
2 Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China;
3 Beijing Academy of Quantum Information Sciences, Beijing 100193, China |
|
|
Abstract The electronic Fabry-Pérot interferometer operating in the quantum Hall regime may be a promising tool for probing edge state interferences and studying the non-Abelian statistics of fractionally charged quasiparticles. Here we report on realizing a quantum Hall Fabry-Pérot interferometer based on monolayer graphene. We observe resistance oscillations as a function of perpendicular magnetic field and gate voltage both on the electron and hole sides. Their Coulomb-dominated origin is revealed by the positive (negative) slope of the constant phase lines in the plane of magnetic field and gate voltage on the electron (hole) side. Our work demonstrates that the graphene interferometer is feasible and paves the way for the studies of edge state interferences since high-Landau-level and even denominator fractional quantum Hall states have been found in graphene.
|
Received: 23 September 2019
Revised: 30 October 2019
Accepted manuscript online:
|
PACS:
|
72.80.Vp
|
(Electronic transport in graphene)
|
|
73.23.-b
|
(Electronic transport in mesoscopic systems)
|
|
73.43.-f
|
(Quantum Hall effects)
|
|
85.35.Ds
|
(Quantum interference devices)
|
|
Fund: Project supported by the National Key Research and Development Program of China (Grant Nos. 2016YFA0300601 and 2017YFA0303304), the National Natural Science Foundation of China (Grant Nos. 11874071, 11774005, and 11974026), and Beijing Academy of Quantum Information Sciences, China (Grant No. Y18G22). |
Corresponding Authors:
Ning Kang, Hong-Qi Xu
E-mail: nkang@pku.edu.cn;hqxu@pku.edu.cn
|
Cite this article:
Guan-Qun Zhang(张冠群), Li Lin(林立), Hailin Peng(彭海琳), Zhongfan Liu(刘忠范), Ning Kang(康宁), Hong-Qi Xu(徐洪起) Coulomb-dominated oscillations in a graphene quantum Hall Fabry-Pérot interferometer 2019 Chin. Phys. B 28 127203
|
[34] |
Wang Y, Brar V W, Shytov A V, Wu Q, Regan W, Tsai H Z, Zettl A, Levitov L S and Crommie M F 2012 Nat. Phys. 8 653
|
[1] |
Zhang Y, McClure D T, Levenson-Falk E M, Marcus C M, Pfeiffer L N and West K W 2009 Phys. Rev. B 79 241304
|
[35] |
Wang Y, Wong D, Shytov A V, Brar V W, Choi S, Wu Q, Tsai H Z, Regan W, Zettl A, Kawakami R K, et al. 2013 Science 340 734
|
[2] |
McClure D T, Zhang Y, Rosenow B, Levenson-Falk E M, Marcus C M, Pfeiffer L and West K W 2009 Phys. Rev. Lett. 103 206806
|
[36] |
Bai K K, Wei Y C, Qiao J B, Li S Y, Yin L J, Yan W, Nie J C and He L 2015 Phys. Rev. B 92 121405
|
[3] |
Willett R L, Pfeiffer L N and West K 2010 Phys. Rev. B 82 205301
|
[37] |
Srivastava P K, Arya S, Kumar S and Ghosh S 2017 Phys. Rev. B 96 241407
|
[4] |
McClure D, Chang W, Marcus C M, Pfeiffer L and West K 2012 Phys. Rev. Lett. 108 256804
|
[38] |
Li J, Lin L, Rui D, Li Q, Zhang J, Kang N, Zhang Y, Peng H, Liu Z and Xu H 2017 ACS Nano 11 4641
|
[5] |
Nakamura J, Fallahi S, Sahasrabudhe H, Rahman R, Liang S, Gardner G C and Manfra M J 2019 Nat. Phys. 15 563
|
[39] |
Overweg H, Eggimann H, Chen X, Slizovskiy S, Eich M, Pisoni R, Lee Y, Rickhaus P, Watanabe K, Taniguchi T, et al. 2017 Nano Lett. 18 553
|
[6] |
Bonderson P, Kitaev A and Shtengel K 2006 Phy. Rev. Lett. 96 016803
|
[40] |
Banszerus L, Frohn B, Epping A, Neumaier D, Watanabe K, Taniguchi T and Stampfer C 2018 Nano Lett. 18 4785
|
[7] |
Ilan R, Grosfeld E and Stern A 2008 Phys. Rev. Lett. 100 086803
|
[8] |
Kitaev A Y 2003 Annals of Physics 303 2
|
[9] |
Nayak C, Simon S H, Stern A, Freedman M and Sarma S D 2008 Rev. Mod. Phys. 80 1083
|
[10] |
Willett R 2013 Rep. Prog. Phys. 76 076501
|
[11] |
Datta S 1997 Electronic transport in mesoscopic systems (Cambridge: Cambridge University Press)
|
[12] |
Ofek N, Bid A, Heiblum M, Stern A, Umansky V and Mahalu D 2010 Proc. Natl. Acad. Sci. USA 107 5276
|
[13] |
Choi H K, Sivan1 I, Rosenblatt1 A, Heiblum M, Umanskyl V and Mahalu1 D 2015 Nat. Commun. 6 7435
|
[14] |
Sivan I, Choi1 H K, Park1 J, Rosenblattl A, Gefen1 Y, Mahalul D and Umansky V 2016 Nat. Commun. 7 12184
|
[15] |
Zhu Y Y, Bai M M, Zheng S Y, Fan J, Jing X N, Ji Z Q, Yang C L, Liu G T and Lu L 2017 Chin. Phys. Lett. 34 067301
|
[16] |
Rosenow B and Halperin B 2007 Phys. Rev. Lett. 98 106801
|
[17] |
Halperin B I, Stern A, Neder I and Rosenow B 2011 Phys. Rev. B 83 155440
|
[18] |
Camino F, Zhou W and Goldman V 2007 Phys. Rev. B 76 155305
|
[19] |
Du X, Skachko I, Duerr F, Luican A and Andrei E Y 2009 Nature 462 192
|
[20] |
Dean C R, Young A F, Cadden-Zimansky P, Wang L, Ren H, Watanabe K, Taniguchi T, Kim P, Hone J and Shepard K 2011 Nat. Phys. 7 693
|
[21] |
Lin X, Du R and Xie X 2014 Natl. Sci. Rev. 1 564
|
[22] |
Amet F, Bestwick A, Williams J, Balicas L, Watanabe K, Taniguchi T and Goldhaber-Gordon D 2015 Nat. Commun. 6 5838
|
[23] |
Zibrov A, Spanton E, Zhou H, Kometter C, Taniguchi T, Watanabe K and Young A 2018 Nat. Phys. 14 930
|
[24] |
Kim Y, Balram A C, Taniguchi T, Watanabe K, Jain J K and Smet J H 2019 Nat. Phys. 15 154
|
[25] |
Lin L, Li J, Ren H, Koh A L, Kang N, Peng H, Xu H Q and Liu Z 2016 ACS Nano 10 2922
|
[26] |
Chklovskii D, Shklovskii B I and Glazman L 1992 Phys. Rev. B 46 4026
|
[27] |
Aoki N, Da Cunha C, Akis R, Ferry D and Ochiai Y 2005 Phys. Rev. B 72 155327
|
[28] |
Huckestein B 1995 Rev. Mod. Phys. 67 357
|
[29] |
Ilani S, Martin J, Teitelbaum E, Smet J, Mahalu D, Umansky V and Yacoby A 2004 Nature 427 328
|
[30] |
Martin J, Akerman N, Ulbricht G, Lohmann T, Von Klitzing K, Smet J and Yacoby A 2009 Nat. Phys. 5 669
|
[31] |
Tóvári E, Makk P, Rickhaus P, Schönenberger C and Csonka S 2016 Nanoscale 8 11480
|
[32] |
Hackens B, Martins F, Faniel S, Dutu C A, Sellier H, Huant S, Pala M, Desplanque L, Wallart X and Bayot V 2010 Nat. Commun. 1 39
|
[33] |
Novikov D 2007 Appl. Phys. Lett. 91 102102
|
[34] |
Wang Y, Brar V W, Shytov A V, Wu Q, Regan W, Tsai H Z, Zettl A, Levitov L S and Crommie M F 2012 Nat. Phys. 8 653
|
[35] |
Wang Y, Wong D, Shytov A V, Brar V W, Choi S, Wu Q, Tsai H Z, Regan W, Zettl A, Kawakami R K, et al. 2013 Science 340 734
|
[36] |
Bai K K, Wei Y C, Qiao J B, Li S Y, Yin L J, Yan W, Nie J C and He L 2015 Phys. Rev. B 92 121405
|
[37] |
Srivastava P K, Arya S, Kumar S and Ghosh S 2017 Phys. Rev. B 96 241407
|
[38] |
Li J, Lin L, Rui D, Li Q, Zhang J, Kang N, Zhang Y, Peng H, Liu Z and Xu H 2017 ACS Nano 11 4641
|
[39] |
Overweg H, Eggimann H, Chen X, Slizovskiy S, Eich M, Pisoni R, Lee Y, Rickhaus P, Watanabe K, Taniguchi T, et al. 2017 Nano Lett. 18 553
|
[40] |
Banszerus L, Frohn B, Epping A, Neumaier D, Watanabe K, Taniguchi T and Stampfer C 2018 Nano Lett. 18 4785
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|