Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(4): 043701    DOI: 10.1088/1674-1056/28/4/043701
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

Cavity enhanced measurement of trap frequency in an optical dipole trap

Peng-Fei Yang(杨鹏飞)1, Hai He(贺海)1, Zhi-Hui Wang(王志辉)1, Xing Han(韩星)1, Gang Li(李刚)1,2, Peng-Fei Zhang(张鹏飞)1,2, Tian-Cai Zhang(张天才)1,2
1 State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Opto-Electronics, Shanxi University, Taiyuan 030006, China;
2 Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
Abstract  

We demonstrate a direct, fluorescence-free measurement of the oscillation frequency of cold atoms in an optical dipole trap based on a high-finesse optical cavity strongly coupled to atoms. The parametric heating spectra of the trapped atoms are obtained by recording the transmitted photons from the cavity with the trap depth is modulated by different frequency. Moreover, in our method the oscillation can be observed directly in the time scale. Being compared to the conventional fluorescence-dependent method, our approach avoids uncertainties associated with the illuminating light and auxiliary imaging optics. This method has the potential application of determining the motion of atoms with stored quantum bits or degenerate gases without destroying them.

Keywords:  cavity QED      oscillation frequency  
Received:  21 January 2019      Revised:  15 February 2019      Accepted manuscript online: 
PACS:  37.10.Gh (Atom traps and guides)  
  42.50.Pq (Cavity quantum electrodynamics; micromasers)  
Fund: 

Project supported by the National Key Research and Development Program of China (Grant No. 2017YFA0304502), the National Natural Science Foundation of China (Grant Nos. 11634008, 11674203, 11574187, and 61227902), and the Fund for Shanxi “1331 Project” Key Subjects Construction.

Corresponding Authors:  Gang Li, Tian-Cai Zhang     E-mail:  gangli@sxu.edu.cn;tczhang@sxu.edu.cn

Cite this article: 

Peng-Fei Yang(杨鹏飞), Hai He(贺海), Zhi-Hui Wang(王志辉), Xing Han(韩星), Gang Li(李刚), Peng-Fei Zhang(张鹏飞), Tian-Cai Zhang(张天才) Cavity enhanced measurement of trap frequency in an optical dipole trap 2019 Chin. Phys. B 28 043701

[1] Xia T, Lichtman M, Maller K, Carr A W, Piotrowicz M J, Isenhower L and Saffman M 2015 Phys. Rev. Lett. 114 100503
[2] Miller J D, Cline R A and Heinzen D J 1993 Phys. Rev. A 47 R4567
[3] Wang Z H, Tian Y L, Yang C, Zhang P F, Li G and Zhang T C 2016 Phys. Rev. A 94 062124
[4] Yang J H, He X D, Guo R J, Xu P, Wang K P, Sheng C, Liu M, Wang J, Derevianko A and Zhan M S 2016 Phys. Rev. Lett. 117 123201
[5] Tian Y L, Wang Z H, Zhang P F, Li G, Li J and Zhang T C 2018 Phys. Rev. A 97 013840
[6] Kaufman A M, Lester B J and Regal C A 2012 Phys. Rev. X 2 041014
[7] Kuhr S, Alt W, Schrader D, Dotsenko I, Miroshnychenko Y, Rosenfeld W, Khudaverdyan M, Gomer V, Rauschenbeutel A and Meschede D 2003 Phys. Rev. Lett. 91 213002
[8] Thomas M, Stephan F, Christian L and Uwe S 2012 New J. Phys. 14 073020
[9] Gustavson T L, Chikkatur A P, Leanhardt A E, Görlitz A, Gupta S, Pritchard D E and Ketterle W 2001 Phys. Rev. Lett. 88 020401
[10] Couvert A, Kawalec T, Reinaudi G and Guéry-Odelin D 2008 Europhys. Lett. 83 13001
[11] Jáuregui R, Poli N, Roati G and Modugno G 2001 Phys. Rev. A 64 033403
[12] Alt W, Schrader D, Kuhr S, Müller M, Gomer V and Meschede D 2003 Phys. Rev. A 67 033403
[13] Poli N, Brecha R J, Roati G and Modugno G 2002 Phys. Rev. A 65 021401(R)
[14] Friebel S, Andrea C D, Walz J, Weitz M and Hänsch T W 1998 Phys. Rev. A 57 R20
[15] Li W F, Du J J, Wen R J, Yang P F, Li G, Liang J J and Zhang T C 2014 Appl. Phys. Lett. 104 113102
[16] Nölleke C, Neuzner A, Reiserer A, Hahn C, Rempe G and Ritter S 2013 Phys. Rev. Lett. 110 140403
[17] Specht H P, Nolleke C, Reiserer A, Uphoff M, Figueroa E, Ritter S and Rempe G 2011 Nature 473 190
[18] Ritter S, Nolleke C, Hahn C, Reiserer A, Neuzner A, Uphoff M, Mucke M, Figueroa E, Bochmann J and Rempe G 2012 Nature 484 195
[19] Ritter S, Nlleke C, Hahn C, Reiserer A, Neuzner A, Uphoff M, Mcke M, Figueroa E, Bochmann J and Rempe G 2010 Nature 465 755
[20] Du J J, Li W F, Wen R J, Li G, Zhang P F and Zhang T C 2013 Appl. Phys. Lett. 103 129903
[21] Zhang P F, Guo Y Q, Li Z H, Zhang Y C, Zhang Y F, Du J J, Li G, Wang J M and Zhang T C 2011 Phys. Rev. A 83 031804
[22] Nußmann S, Hijlkema M, Weber B, Rohde F, Rempe G and Kuhn A 2005 Phys. Rev. Lett. 95 173602
[23] Hood C J, Lynn T W, Doherty A C, Parkins A S and Kimble H J 2000 Science 287 1447
[24] Agarwal G S 1984 Phys. Rev. Lett. 53 1732
[25] Rempe G, Thompson R J and Kimble H J 1994 Phys. Scr. 1994 67
[26] Grimm R, Weidemüller M and Ovchinnikov Y B 2000 Advances in Atomic, Molecular, and Optical Physics (Academic Press) pp. 95-170
[27] Sun H Y 1998 Opt. Eng. 37 2906
[28] Gardiner C W, Ye J, Nagerl H C and Kimble H J 2000 Phys. Rev. A 61 045801
[29] Savard T A, O'Hara K M and Thomas J E 1997 Phys. Rev. A 56 R1095
[30] Roati G, Jastrzebski W, Simoni A, Modugno G and Inguscio M 2001 Phys. Rev. A 63 052709
[31] Schrader D, Kuhr S, Alt W, Müller M, Gomer V and Meschede D 2001 Appl. Phys. B 73 819
[32] Greiner M, Bloch I, Hänsch T W and Esslinger T 2001 Phys. Rev. A 63 031401
[33] Wang J, He J, Yan S B, Geng T, Zhang T C and Wang J M 2008 Acta Sin. Quantum Opt. 14 44 (in Chinese)
[34] Andrews M R, Townsend C G, Miesner H J, Durfee D S, Kurn D M and Ketterle W 1997 Science 275 637
[35] Deiglmayr J, Saßmannshausen H, Pillet P and Merkt F 2014 Phys. Rev. Lett. 113 193001
[36] Maunz P, Puppe T, Schuster I, Syassen N, Pinkse P W H and Rempe G 2004 Nature 428 50
[37] Blatt S, Mazurenko A, Parsons M F, Chiu C S, Huber F and Greiner M 2015 Phys. Rev. A 92 021402
[38] Wen R J, Du J J, Li W F, Li G and Zhang T C 2014 Acta Phys. Sin. 63 244203 (in Chinese)
[39] Tuchendler C, Lance A M, Browaeys A, Sortais Y R P and Grangier P 2008 Phys. Rev. A 78 033425
[1] Impact of gate offset in gate recess on DC and RF performance of InAlAs/InGaAs InP-based HEMTs
Shurui Cao(曹书睿), Ruize Feng(封瑞泽), Bo Wang(王博), Tong Liu(刘桐), Peng Ding(丁芃), and Zhi Jin(金智). Chin. Phys. B, 2022, 31(5): 058502.
[2] Enhancement of fMAX of InP-based HEMTs by double-recessed offset gate process
Bo Wang(王博), Peng Ding(丁芃), Rui-Ze Feng(封瑞泽), Shu-Rui Cao(曹书睿), Hao-Miao Wei(魏浩淼), Tong Liu(刘桐), Xiao-Yu Liu(刘晓宇), Hai-Ou Li(李海鸥), and Zhi Jin(金智). Chin. Phys. B, 2022, 31(5): 058506.
[3] Impact of symmetric gate-recess length on the DC and RF characteristics of InP HEMTs
Ruize Feng(封瑞泽), Bo Wang(王博), Shurui Cao(曹书睿), Tong Liu(刘桐), Yongbo Su(苏永波), Wuchang Ding(丁武昌), Peng Ding(丁芃), and Zhi Jin(金智). Chin. Phys. B, 2022, 31(1): 018505.
[4] Phase-modulated quadrature squeezing in two coupled cavities containing a two-level system
Hao-Zhen Li(李浩珍), Ran Zeng(曾然), Xue-Fang Zhou(周雪芳), Mei-Hua Bi(毕美华), Jing-Ping Xu(许静平), Ya-Ping Yang(羊亚平). Chin. Phys. B, 2020, 29(5): 050308.
[5] A novel scheme of hybrid entanglement swapping and teleportation using cavity QED in the small and large detuning regimes and quasi-Bell state measurement method
R Pakniat, M K Tavassoly, M H Zandi. Chin. Phys. B, 2016, 25(10): 100303.
[6] Photon bunching and anti-bunching with two dipole-coupled atoms in an optical cavity
Ya-Mei Zheng(郑雅梅), Chang-Sheng Hu(胡长生), Zhen-Biao Yang(杨贞标), Huai-Zhi Wu(吴怀志). Chin. Phys. B, 2016, 25(10): 104202.
[7] Physical modeling of direct current and radio frequency characteristics for InP-based InAlAs/InGaAs HEMTs
Shu-Xiang Sun(孙树祥), Hui-Fang Ji(吉慧芳), Hui-Juan Yao(姚会娟), Sheng Li(李胜), Zhi Jin(金智), Peng Ding(丁芃), Ying-Hui Zhong(钟英辉). Chin. Phys. B, 2016, 25(10): 108501.
[8] Quantum state transfer between atomic ensembles trapped in separate cavities via adiabatic passage
Zhang Chun-Ling (张春玲), Chen Mei-Feng (陈美锋). Chin. Phys. B, 2015, 24(7): 070310.
[9] Scheme for generating a cluster-type entangled squeezed vacuum state via cavity QED
Wen Jing-Ji (文晶姬), Yeon Kyu-Hwang, Wang Hong-Fu (王洪福), Zhang Shou (张寿). Chin. Phys. B, 2014, 23(4): 040301.
[10] 100-nm T-gate InAlAs/InGaAs InP-based HEMTs with fT=249 GHz and fmax=415 GHz
Wang Li-Dan (汪丽丹), Ding Peng (丁芃), Su Yong-Bo (苏永波), Chen Jiao (陈娇), Zhang Bi-Chan (张毕禅), Jin Zhi (金智). Chin. Phys. B, 2014, 23(3): 038501.
[11] Radio-frequency transistors from millimeter-scale graphene domains
Wei Zi-Jun (魏子钧), Fu Yun-Yi (傅云义), Liu Jing-Bo (刘竞博), Wang Zi-Dong (王紫东), Jia Yue-Hui (贾越辉), Guo Jian (郭剑), Ren Li-Ming (任黎明), Chen Yuan-Fu (陈远富), Zhang Han (张酣), Huang Ru (黄如), Zhang Xing (张兴). Chin. Phys. B, 2014, 23(11): 117201.
[12] Large payload quantum steganography based on cavity quantum electrodynamics
Ye Tian-Yu (叶天语), Jiang Li-Zhen (蒋丽珍). Chin. Phys. B, 2013, 22(4): 040305.
[13] Efficient generation of two-dimensional cluster states in cavity QED
Zhang Gang (张刚), Zhou Jian (周建), Xue Zheng-Yuan (薛正远). Chin. Phys. B, 2013, 22(4): 040307.
[14] 0.15-μm T-gate In0.52Al0.48As/In0.53Ga0.47As InP-based HEMT with fmax of 390 GHz
Zhong Ying-Hui (钟英辉), Zhang Yu-Ming (张玉明), Zhang Yi-Men (张义门), Wang Xian-Tai (王显泰), Lü Hong-Liang (吕红亮), Liu Xin-Yu (刘新宇), Jin Zhi (金智). Chin. Phys. B, 2013, 22(12): 128503.
[15] Implementation of quantum controlled phase gate and preparation of multiparticle entanglement in cavity QED
Wu Xi(吴熙), Chen Zhi-Hua(陈志华), Zhang Yong(张勇), Chen Yue-Hua(陈悦华), Ye Ming-Yong(叶明勇), and Lin Xiu-Min(林秀敏). Chin. Phys. B, 2011, 20(6): 060306.
No Suggested Reading articles found!