|
|
Cavity enhanced measurement of trap frequency in an optical dipole trap |
Peng-Fei Yang(杨鹏飞)1, Hai He(贺海)1, Zhi-Hui Wang(王志辉)1, Xing Han(韩星)1, Gang Li(李刚)1,2, Peng-Fei Zhang(张鹏飞)1,2, Tian-Cai Zhang(张天才)1,2 |
1 State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Opto-Electronics, Shanxi University, Taiyuan 030006, China;
2 Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China |
|
|
Abstract We demonstrate a direct, fluorescence-free measurement of the oscillation frequency of cold atoms in an optical dipole trap based on a high-finesse optical cavity strongly coupled to atoms. The parametric heating spectra of the trapped atoms are obtained by recording the transmitted photons from the cavity with the trap depth is modulated by different frequency. Moreover, in our method the oscillation can be observed directly in the time scale. Being compared to the conventional fluorescence-dependent method, our approach avoids uncertainties associated with the illuminating light and auxiliary imaging optics. This method has the potential application of determining the motion of atoms with stored quantum bits or degenerate gases without destroying them.
|
Received: 21 January 2019
Revised: 15 February 2019
Accepted manuscript online:
|
PACS:
|
37.10.Gh
|
(Atom traps and guides)
|
|
42.50.Pq
|
(Cavity quantum electrodynamics; micromasers)
|
|
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2017YFA0304502), the National Natural Science Foundation of China (Grant Nos. 11634008, 11674203, 11574187, and 61227902), and the Fund for Shanxi “1331 Project” Key Subjects Construction. |
Corresponding Authors:
Gang Li, Tian-Cai Zhang
E-mail: gangli@sxu.edu.cn;tczhang@sxu.edu.cn
|
Cite this article:
Peng-Fei Yang(杨鹏飞), Hai He(贺海), Zhi-Hui Wang(王志辉), Xing Han(韩星), Gang Li(李刚), Peng-Fei Zhang(张鹏飞), Tian-Cai Zhang(张天才) Cavity enhanced measurement of trap frequency in an optical dipole trap 2019 Chin. Phys. B 28 043701
|
[1] |
Xia T, Lichtman M, Maller K, Carr A W, Piotrowicz M J, Isenhower L and Saffman M 2015 Phys. Rev. Lett. 114 100503
|
[2] |
Miller J D, Cline R A and Heinzen D J 1993 Phys. Rev. A 47 R4567
|
[3] |
Wang Z H, Tian Y L, Yang C, Zhang P F, Li G and Zhang T C 2016 Phys. Rev. A 94 062124
|
[4] |
Yang J H, He X D, Guo R J, Xu P, Wang K P, Sheng C, Liu M, Wang J, Derevianko A and Zhan M S 2016 Phys. Rev. Lett. 117 123201
|
[5] |
Tian Y L, Wang Z H, Zhang P F, Li G, Li J and Zhang T C 2018 Phys. Rev. A 97 013840
|
[6] |
Kaufman A M, Lester B J and Regal C A 2012 Phys. Rev. X 2 041014
|
[7] |
Kuhr S, Alt W, Schrader D, Dotsenko I, Miroshnychenko Y, Rosenfeld W, Khudaverdyan M, Gomer V, Rauschenbeutel A and Meschede D 2003 Phys. Rev. Lett. 91 213002
|
[8] |
Thomas M, Stephan F, Christian L and Uwe S 2012 New J. Phys. 14 073020
|
[9] |
Gustavson T L, Chikkatur A P, Leanhardt A E, Görlitz A, Gupta S, Pritchard D E and Ketterle W 2001 Phys. Rev. Lett. 88 020401
|
[10] |
Couvert A, Kawalec T, Reinaudi G and Guéry-Odelin D 2008 Europhys. Lett. 83 13001
|
[11] |
Jáuregui R, Poli N, Roati G and Modugno G 2001 Phys. Rev. A 64 033403
|
[12] |
Alt W, Schrader D, Kuhr S, Müller M, Gomer V and Meschede D 2003 Phys. Rev. A 67 033403
|
[13] |
Poli N, Brecha R J, Roati G and Modugno G 2002 Phys. Rev. A 65 021401(R)
|
[14] |
Friebel S, Andrea C D, Walz J, Weitz M and Hänsch T W 1998 Phys. Rev. A 57 R20
|
[15] |
Li W F, Du J J, Wen R J, Yang P F, Li G, Liang J J and Zhang T C 2014 Appl. Phys. Lett. 104 113102
|
[16] |
Nölleke C, Neuzner A, Reiserer A, Hahn C, Rempe G and Ritter S 2013 Phys. Rev. Lett. 110 140403
|
[17] |
Specht H P, Nolleke C, Reiserer A, Uphoff M, Figueroa E, Ritter S and Rempe G 2011 Nature 473 190
|
[18] |
Ritter S, Nolleke C, Hahn C, Reiserer A, Neuzner A, Uphoff M, Mucke M, Figueroa E, Bochmann J and Rempe G 2012 Nature 484 195
|
[19] |
Ritter S, Nlleke C, Hahn C, Reiserer A, Neuzner A, Uphoff M, Mcke M, Figueroa E, Bochmann J and Rempe G 2010 Nature 465 755
|
[20] |
Du J J, Li W F, Wen R J, Li G, Zhang P F and Zhang T C 2013 Appl. Phys. Lett. 103 129903
|
[21] |
Zhang P F, Guo Y Q, Li Z H, Zhang Y C, Zhang Y F, Du J J, Li G, Wang J M and Zhang T C 2011 Phys. Rev. A 83 031804
|
[22] |
Nußmann S, Hijlkema M, Weber B, Rohde F, Rempe G and Kuhn A 2005 Phys. Rev. Lett. 95 173602
|
[23] |
Hood C J, Lynn T W, Doherty A C, Parkins A S and Kimble H J 2000 Science 287 1447
|
[24] |
Agarwal G S 1984 Phys. Rev. Lett. 53 1732
|
[25] |
Rempe G, Thompson R J and Kimble H J 1994 Phys. Scr. 1994 67
|
[26] |
Grimm R, Weidemüller M and Ovchinnikov Y B 2000 Advances in Atomic, Molecular, and Optical Physics (Academic Press) pp. 95-170
|
[27] |
Sun H Y 1998 Opt. Eng. 37 2906
|
[28] |
Gardiner C W, Ye J, Nagerl H C and Kimble H J 2000 Phys. Rev. A 61 045801
|
[29] |
Savard T A, O'Hara K M and Thomas J E 1997 Phys. Rev. A 56 R1095
|
[30] |
Roati G, Jastrzebski W, Simoni A, Modugno G and Inguscio M 2001 Phys. Rev. A 63 052709
|
[31] |
Schrader D, Kuhr S, Alt W, Müller M, Gomer V and Meschede D 2001 Appl. Phys. B 73 819
|
[32] |
Greiner M, Bloch I, Hänsch T W and Esslinger T 2001 Phys. Rev. A 63 031401
|
[33] |
Wang J, He J, Yan S B, Geng T, Zhang T C and Wang J M 2008 Acta Sin. Quantum Opt. 14 44 (in Chinese)
|
[34] |
Andrews M R, Townsend C G, Miesner H J, Durfee D S, Kurn D M and Ketterle W 1997 Science 275 637
|
[35] |
Deiglmayr J, Saßmannshausen H, Pillet P and Merkt F 2014 Phys. Rev. Lett. 113 193001
|
[36] |
Maunz P, Puppe T, Schuster I, Syassen N, Pinkse P W H and Rempe G 2004 Nature 428 50
|
[37] |
Blatt S, Mazurenko A, Parsons M F, Chiu C S, Huber F and Greiner M 2015 Phys. Rev. A 92 021402
|
[38] |
Wen R J, Du J J, Li W F, Li G and Zhang T C 2014 Acta Phys. Sin. 63 244203 (in Chinese)
|
[39] |
Tuchendler C, Lance A M, Browaeys A, Sortais Y R P and Grangier P 2008 Phys. Rev. A 78 033425
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|