INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Prev
Next
|
|
|
100-nm T-gate InAlAs/InGaAs InP-based HEMTs with fT=249 GHz and fmax=415 GHz |
Wang Li-Dan (汪丽丹), Ding Peng (丁芃), Su Yong-Bo (苏永波), Chen Jiao (陈娇), Zhang Bi-Chan (张毕禅), Jin Zhi (金智) |
Microware Devices and Integrated Circuits Department, Key Laboratory of Microelectronics Device and Integrated Technology, Institute of Microelectronics, Chinese Academy of Sciences, Beijing 100029, China |
|
|
Abstract InAlAs/InGaAs high electron mobility transistors (HEMTs) on an InP substrate with well-balanced cutoff frequency fT and maximum oscillation frequency fmax are reported. An InAlAs/InGaAs HEMT with 100-nm gate length and gate width of 2×50 μm shows excellent DC characteristics, including full channel current of 724 mA/mm, extrinsic maximum transconductance gm.max of 1051 mS/mm, and drain–gate breakdown voltage BVDG of 5.92 V. In addition, this device exhibits fT=249 GHz and fmax=415 GHz. These results were obtained by fabricating an asymmetrically recessed gate and minimizing the parasitic resistances. The specific Ohmic contact resistance was reduced to 0.031 Ω·mm. Moreover, the fT obtained in this work is the highest ever reported in 100-nm gate length InAlAs/InGaAs InP-based HEMTs. The outstanding gm.max, fT, fmax, and good BVDG make the device suitable for applications in low noise amplifiers, power amplifiers, and high speed circuits.
|
Received: 25 June 2013
Revised: 02 September 2013
Accepted manuscript online:
|
PACS:
|
85.30.-z
|
(Semiconductor devices)
|
|
73.40.Qv
|
(Metal-insulator-semiconductor structures (including semiconductor-to-insulator))
|
|
85.30.Tv
|
(Field effect devices)
|
|
Fund: Project supported by the National Basic Research Program of China (Grant No. 2010CB327502). |
Corresponding Authors:
Jin Zhi
E-mail: jinzhi@ime.ac.cn
|
Cite this article:
Wang Li-Dan (汪丽丹), Ding Peng (丁芃), Su Yong-Bo (苏永波), Chen Jiao (陈娇), Zhang Bi-Chan (张毕禅), Jin Zhi (金智) 100-nm T-gate InAlAs/InGaAs InP-based HEMTs with fT=249 GHz and fmax=415 GHz 2014 Chin. Phys. B 23 038501
|
[1] |
Li D L and Zeng Y P 2006 Chin. Phys. 15 2735
|
[2] |
Cheng Z Q, Cai Y, Liu J, Zhou Y G, Lau K M and Chen J K 2007 Chin. Phys. 16 3494
|
[3] |
Li H O, Huang W, Tang C W, Deng X F and Lau K M 2011 Chin. Phys. B 20 068502
|
[4] |
Chau R, Datta S, Doczy M, Doyle B, Jin B, Kavalieros J, Majumdar A, Metz M, and Radosavljevic M 2005 IEEE Trans. Nanotechnol. 4 153
|
[5] |
Murata K, Sano K, Kitabayashi H, Sugitani S, Sugahara H and Enoki T 2004 IEEE Journal of Solid-State Circuits 39 207
|
[6] |
Lai R, Mei X B, Deal W R, Yoshida W, Kim Y M, Liu P H, Lee J, Uyeda J, Radisic V, Lange M, Gaier T, Samoska L and Fung A 2007 IEEE International Electron Devices Meeting, December 10–12, 2007, Washington DC, USA, p. 609
|
[7] |
Kim D H and Alamo J A 2010 IEEE Electron Device Lett. 31 806
|
[8] |
Zimmer T, Bodi D O, Dumas J M, Labat N, Touboul A and Danto Y 1992 Solid-State Electron. 35 1543
|
[9] |
Vasallo B G, Rodilla H, Gonzalez T, Moschetti G, Grahn J and Mateos J 2010 J. Appl. Phys. 108 094505
|
[10] |
Kim D H, Alamo J A, Lee J H and Seo K S 2006 Journal of Semiconductor Technology and Science 6 146
|
[11] |
Chen K J, Enoki T, Maezawa K, Arai K and Yamamoto M 1996 IEEE Trans. Electron. Devices 43 252
|
[12] |
Spicer W E, Chye P W, Garner C M, Lindau I and Pianetta P 1979 Surface Science 86 763
|
[13] |
Spicer W E, Lindau I, Pianetta P, Su C Y and Chye P 1980 Phys. Rev. Lett. 44 420
|
[14] |
Grundbacher R, Lai R, Barsky M, Tsai R, Gaier T, Weinreb S, Dawson D, Bautista J J, Davis J F, Erickson N, Block T and Oki A 2002 14m th IEEE Indium Phosphide and Related Materials Conference, May 12–16, 2002, Stockholm, Sweden, p. 455
|
[15] |
Bahl S R and Alamo J A 1993 IEEE Trans. Electron. Devices 40 1558
|
[16] |
Mizuta H, Yamaguchi K and Takahashi S 1987 IEEE Trans. Electron. Devices 34 2027
|
[17] |
Shinohara K, Yamashita Y, Endoh A, Watanabe L, Hikosaka K, Matsui T, Mimura T and Hiyamizu S 2004 IEEE Electron. Device Lett. 25 241
|
[18] |
Suemitsu T, Enoki T, Sano N, Tomizawa M and Ishii Y 1998 IEEE Trans. Electron. Devices 45 2390
|
[19] |
Suemitsu T, Yokoyama H, Ishii T, Enoki T, Meneghesso G and Zanoni E 2002 IEEE Trans. Electron. Devices 49 1694
|
[20] |
Kim D H, Alamo J A, Lee J H and Seo K S 2006 18th IEEE Indium Phosphide and Related Materials Conference, May 8–11, 2006, Princeton, USA, p. 177
|
[21] |
Shinohara K, Yamashita Y, Endoh A, Hikosaka K, Matsui T, Hiyamizu S and Mimura T 2002 14m th IEEE Indium Phosphide and Related Materials Conference, May 12–16, 2002, Stockholm, Sweden, p. 451
|
[22] |
Zhong Y H, Wang X T, Su Y B, Cao Y X, Jin Z, Zhang Y M and Liu X Y 2011 IEEE International Symposium on Radio-Frequency Integration Technology, December 2, 2011, Beijing, China, p. 213
|
[23] |
Enoki T, Umeda Y, Osafune K, Ito H and Ishii Y 1995 IEEE International Electron Devices Meeting, December 10–13, 1995, Washington DC, USA, p. 193
|
[24] |
Suemitsu T, Yokoyama H, Umeda Y, Enoki T and Ishii Y 1999 IEEE Electron. Device Lett. 46 1074
|
[25] |
Wichmann N, Duszynski I, Bollaert S, Mateos J, Wallart X and Cappy A 2004 IEEE International Electron Devices Meeting, December 13–15, 2004, San Francisco, USA, p. 1023
|
[26] |
Roca Y C, Schworer C, Leuther A and Eggebert M S 2006 IEEE Trans. Microwave Theory Tech. 54 2983
|
[27] |
Vasallo B G, Wichmanm N, Bollaert S, Roelens Y, Cappy A, Gonzalez T, Pardo D and Mateos J 2007 IEEE Electron. Device Lett. 54 2815
|
[28] |
Vasallo B G, Wichmann N, Bollaert S, Roelens Y, Cappy A, Gonzalez T, Pardo D and Mateos J 2008 IEEE Trans. Electron. Devices 55 1535
|
[29] |
Liu C H, Mei X B, Chou Y C, Lee L S, Yang J M, Nishimoto M Y, Liu P H, To R, Cavus A, Tsai R, Wojtowicz M and Lai R 2009 Annual IEEE Compound Semiconductor Integrated Circuit Symposium, Oct 11–14, 2009, Greensboro, USA, p. 1
|
[30] |
Liu L, Alt A R, Benedickter H and Bolognesi C R 2012 IEEE Electron Device Lett. 33 209
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|