Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(4): 043702    DOI: 10.1088/1674-1056/28/4/043702
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

Laser-assisted Stark deceleration of CaF in its rovibronic ground (high-field-seeking) state

Yuefeng Gu(顾跃凤)1, Kai Chen(陈凯)1, Yunxia Huang(黄云霞)1, Xiaohua Yang(杨晓华)1,2
1 School of Science, Nantong University, Nantong 226019, China;
2 State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, China
Abstract  

A near-resonant, red-detuning laser-assisted Stark deceleration scheme is proposed to slow CaF in its high-field-seeking rovibronic ground state. The assisting Gaussian laser beam can confine CaF molecules transversely owing to the optical Stark effect. Simulations suggest that the present scheme is superior to previous Stark decelerators. Under typical experimental conditions, when the assisting laser frequency is red-detuned to the molecular transition (λ~606.3 nm) by 5.0 GHz and the laser power is about 5.6 W, the proposed decelerator can achieve a total number at the order of 104 CaF molecules with a number density at the order of 108 cm-3. The equivalent temperature of the obtained cold CaF molecules is 2.3 mK. Additionally, the desired assisting laser power can be as low as about 1.2 W if keeping the red-detuning value to be 1.0 GHz, which further suggests its experimental feasibility.

Keywords:  Stark deceleration      polar molecule      optical Stark effect      high-field-seeking state  
Received:  10 December 2018      Revised:  29 January 2019      Accepted manuscript online: 
PACS:  37.10.Mn (Slowing and cooling of molecules)  
  32.60.+i (Zeeman and Stark effects)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant No. 11604164).

Corresponding Authors:  Yunxia Huang, Xiaohua Yang     E-mail:  hyx@ntu.edu.cn;xhyang@ntu.edu.cn

Cite this article: 

Yuefeng Gu(顾跃凤), Kai Chen(陈凯), Yunxia Huang(黄云霞), Xiaohua Yang(杨晓华) Laser-assisted Stark deceleration of CaF in its rovibronic ground (high-field-seeking) state 2019 Chin. Phys. B 28 043702

[1] Micheli A, Brennen G K and Zoller P 2006 Nat. Phys. 2 341
[2] Goral K, Santos L and Lewenstein M 2002 Phys. Rev. Lett. 88 170406
[3] Yelin S F, Kirby K and Côté R 2006 Phys. Rev. A 74 050301
[4] DeMille D 2002 Phys. Rev. Lett. 88 067901
[5] Lee C and Ostrovskaya E A 2005 Phys. Rev. A 72 062321
[6] Krems R V 2005 Int. Rev. Phys. Chem. 24 99
[7] Krems R V 2004 Phys. Rev. Lett. 93 013201
[8] Schiller S 2007 Phys. Rev. Lett. 98 180801
[9] Demille D, Sainis S, Sage J, Bergeman T, Kotochigova S and Tiesinga E 2008 Phys. Rev. Lett. 100 043202
[10] Zelevinsky T, Kotochigova S and Ye J 2008 Phys. Rev. Lett. 100 043201
[11] Hudson E R, Lewandowski H J, Sawyer B C and Ye J 2006 Phys. Rev. Lett. 96 143004
[12] Bohn J L, Rey A M and Ye J 2017 Science 357 1002
[13] Dhont G S F, Lenthe J H V, Groenenboom G C and van der Avoird A 2005 J. Chem. Phys. 123 184302
[14] Janssen L M C, Groenenboom G C, van der Avoird A, Żuchowski P S and Podeszwa R 2009 J. Chem. Phys. 131 224314
[15] Manai I, Horchani R, Lignier H, Pillet P and Comparat D 2012 Phys. Rev. Lett. 109 183001
[16] Zhelyazkova V, Cournol A, Wall T E, Matsushima A, Hudson J J, Hinds E A, Tarbutt M R and Sauer B E 2014 Phys. Rev. A 89 053416
[17] Wan M G, Yuan D, Jin C G, Wang F H, Yang Y J, Yu Y and Shao J X 2016 J. Chem. Phys. 145 024309
[18] Bethlem H L, Berden G and Meijer G 1999 Phys. Rev. Lett. 83 1558
[19] Bochinski J R, Hudson E R, Lewandowski H J, Meijer G and Ye J 2003 Phys. Rev. Lett. 91 243001
[20] Hudson E R, Ticknor C, Sawyer B C, Taatjes C A, Lewandowski H J, Bochinski J R, Bohn J L and Ye J 2006 Phys. Rev. A 73 063404
[21] van de Meerakker S Y T, Labazan I, Hoekstra S, Küpper J and Meijer G 2006 J. Phys. B: At. Mol. Opt. Phys. 39 S1077
[22] Narevicius E, Libson A, Parthey C G, Chavez I, Narevicius J, Even U and Raizen M G 2008 Phys. Rev. Lett. 100 093003
[23] Wiederkehr A W, Hogan S D and Merkt F 2010 Phys. Rev. A 82 043428
[24] Vanhaecke N, Meier U, Andrist M, Meier B H and Merkt F 2007 Phys. Rev. A 75 031402
[25] Doyle J M, Friedrich B, Kim J and Patterson D 1995 Phys. Rev. A 52 R2515
[26] Bethlem H L, Berden G, Crompvoets F M H, Jongma R T, van Roij A J and Meijer G 2000 Nature 406 491
[27] Zeppendeld M, Motsch M, Pinkse P W H and Rempe G 2009 Phys. Rev. A 80 041401
[28] Prehn A, Ibrügger M, Glöckner R, Rempe G and Zeppendeld M 2016 Phys. Rev. Lett. 116 063005
[29] Steinecker M H, McCarron D J, Zhu Y Q and DeMille D 2016 Chem. Phys. Chem. 17 22
[30] Norrgard E B, McCarron D J, Steinecker M H, Tarbutt M R and DeMille D 2016 Phys. Rev. Lett. 116 063004
[31] McCarron D J, Norrgard E B, Steinecker M H and DeMille D 2015 New J. Phys. 17 035014
[32] Williams H J, Truppe S, Hambach M, Caldwell L, Fitch N J, Hinds E A, Sauer B E and Tarbutt M R 2017 New J. Phys. 19 113035
[33] Tokunaga S K, Dyne J K, Hinds E A and Tarbutt M R 2009 New. J. Phys. 11 055038
[34] Bethlem H L, Crompvoets F M H, Jongma R T, van de Meerakker S Y T and Meijer G 2002 Phys. Rev. A 65 053416
[35] Bethlem H L, van Roij A J, Jongma R T and Meijer G 2002 Phys. Rev. Lett. 88 133003
[36] Wall T E, Kanem J F, Dyne J M, Hudson J J, Sauer B E, Hinds E A and Tarbutt M R 2011 Phys. Chem. Chem. Phys. 13 18991
[37] Huang Y X, Xu S W and Yang X H 2016 J. Phys. B: At. Mol. Opt. Phys. 49 135101
[38] Chen K, Huang Y X and Yang X H 2017 Chin. J. Chem. Phys. 30 418
[39] Hanna D C, Yuratich M A and Cotter D 1979 Nonlinear optics of free atoms, molecules (Berlin: Springer-Verlag)
[40] Fieid R W, Harris D O and Tanaka T 1975 J. Mol. Spectrosc. 57 107
[41] Nakagawa J, Domaille P J, Steimle T C and Harris D O 1978 J. Mol. Spectrosc. 70 374
[42] Childs W J, Goodman L S, Nielsen U and Pfeufer V 1984 J. Chem. Phys. 80 062283
[43] Wall T E, Kanem J F, Hudson J J, Sauer B E, Cho D, Boshier M G, Hinds E A and Tarbutt M R 2008 Phys. Rev. A 78 062509
[44] Raouafi S, Jeung G H and Jungen C 2001 J. Chem. Phys. 115 7450
[45] Hemmerling B, Chae E, Ravi A, Anderegg L, Drayna G K, Hutzler N R, Collopy A L, Ye J, Ketterle W and Doyle J M 2016 J. Phys. B: At. Mol. Opt. Phys. 49 174001
[46] Lu H, Rasmussen J, Wright M J, Patterson D and Doyle J M 2011 Phys. Chem. Chem. Phys. 13 18986
[47] Anderegg L, Augenbraun B L, Chae E, Hemmerling B, Hutzler N R, Ravi A, Collopy A L, Ye J, Ketterle W and Doyle J M 2017 Phys. Rev. Lett. 119 103201
[48] Wu H, Reens D, Langen T, Shagam Y, Fontecha D and Ye J 2018 Phys. Chem. Chem. Phys. 20 11615
[49] Tarbutt M R and Steimle T C 2015 Phys. Rev. A 92 053401
[1] Generation of high-energy-resolved NH3 molecular beam by a Stark decelerator with 179 stages
Bin Wei(魏斌), Shunyong Hou(侯顺永), Hengjiao Guo(郭恒娇), Yabing Ji(纪亚兵), Shengqiang Li(李胜强), Jianping Yin(印建平). Chin. Phys. B, 2019, 28(5): 053701.
[2] Optical Stark deceleration of neutral molecules from supersonic expansion with a rotating laser beam
Yongcheng Yang(杨永成), Shunyong Hou(侯顺永), Lianzhong Deng(邓联忠). Chin. Phys. B, 2018, 27(5): 053701.
[3] Theoretical derivation and simulation of a versatileelectrostatic trap for cold polar molecules
Shengqiang Li(李胜强). Chin. Phys. B, 2016, 25(11): 113702.
[4] Diverse solid and supersolid phases of bosons in a triangular lattice
Chen Qi-Hui (陈起辉), Li Peng (李鹏). Chin. Phys. B, 2014, 23(5): 056701.
[5] Adiabatic cooling for cold polar molecules on a chip using a controllable high-efficiency electrostatic surface trap
Li Sheng-Qiang (李胜强), Xu Liang (许亮), Xia Yong (夏勇), Wang Hai-Ling (汪海玲), Yin Jian-Ping (印建平). Chin. Phys. B, 2014, 23(12): 123701.
[6] Electrostatic surface trap for cold polar molecules on a chip
Wang Qin (王琴), Li Sheng-Qiang (李胜强), Hou Shun-Yong (侯顺永), Xia Yong (夏勇), Wang Hai-Ling (汪海玲), Yin Jian-Ping (印建平). Chin. Phys. B, 2014, 23(1): 013701.
[7] Particle-hole bound states of dipolar molecules in an optical lattice
Zhang Yi-Cai (张义财), Wang Han-Ting (汪汉廷), Shen Shun-Qing (沈顺清), Liu Wu-Ming (刘伍明). Chin. Phys. B, 2013, 22(9): 090501.
[8] High-fidelity quantum memory realized via Wigner crystals of polar molecules
Xue Peng(薛鹏) and Wu Jian-Zhi(午剑智) . Chin. Phys. B, 2012, 21(1): 010308.
[9] Deceleration of a continuous-wave (CW) molecular beam with a single quasi-CW semi-Gaussian laser beam
Yin Ya-Ling(尹亚玲), Xia Yong(夏勇), and Yin Jian-Ping(印建平). Chin. Phys. B, 2008, 17(10): 3672-3677.
[10] Electrostatic surface guiding of cold polar molecules with a single charged wire
Deng Lian-Zhong(邓联忠), Xia Yong(夏勇), and Yin Jian-Ping(印建平). Chin. Phys. B, 2007, 16(3): 707-717.
[11] Novel electrostatic trap for cold polar molecules
Xu Xue-Yan (许雪艳), Ma Hui (马慧), and Yin Jian-Ping (印建平). Chin. Phys. B, 2007, 16(12): 3647-3654.
[12] Polar molecule dominated electrorheological effect
Lu Kun-Quan(陆坤权), Shen Rong(沈容), Wang Xue-Zhao(王学昭), Sun Gang(孙刚), Wen Wei-Jia(温维佳), and Liu Ji-Xing(刘寄星). Chin. Phys. B, 2006, 15(11): 2476-2480.
No Suggested Reading articles found!