|
|
Laser-assisted Stark deceleration of CaF in its rovibronic ground (high-field-seeking) state |
Yuefeng Gu(顾跃凤)1, Kai Chen(陈凯)1, Yunxia Huang(黄云霞)1, Xiaohua Yang(杨晓华)1,2 |
1 School of Science, Nantong University, Nantong 226019, China;
2 State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, China |
|
|
Abstract A near-resonant, red-detuning laser-assisted Stark deceleration scheme is proposed to slow CaF in its high-field-seeking rovibronic ground state. The assisting Gaussian laser beam can confine CaF molecules transversely owing to the optical Stark effect. Simulations suggest that the present scheme is superior to previous Stark decelerators. Under typical experimental conditions, when the assisting laser frequency is red-detuned to the molecular transition (λ~606.3 nm) by 5.0 GHz and the laser power is about 5.6 W, the proposed decelerator can achieve a total number at the order of 104 CaF molecules with a number density at the order of 108 cm-3. The equivalent temperature of the obtained cold CaF molecules is 2.3 mK. Additionally, the desired assisting laser power can be as low as about 1.2 W if keeping the red-detuning value to be 1.0 GHz, which further suggests its experimental feasibility.
|
Received: 10 December 2018
Revised: 29 January 2019
Accepted manuscript online:
|
PACS:
|
37.10.Mn
|
(Slowing and cooling of molecules)
|
|
32.60.+i
|
(Zeeman and Stark effects)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11604164). |
Corresponding Authors:
Yunxia Huang, Xiaohua Yang
E-mail: hyx@ntu.edu.cn;xhyang@ntu.edu.cn
|
Cite this article:
Yuefeng Gu(顾跃凤), Kai Chen(陈凯), Yunxia Huang(黄云霞), Xiaohua Yang(杨晓华) Laser-assisted Stark deceleration of CaF in its rovibronic ground (high-field-seeking) state 2019 Chin. Phys. B 28 043702
|
[1] |
Micheli A, Brennen G K and Zoller P 2006 Nat. Phys. 2 341
|
[2] |
Goral K, Santos L and Lewenstein M 2002 Phys. Rev. Lett. 88 170406
|
[3] |
Yelin S F, Kirby K and Côté R 2006 Phys. Rev. A 74 050301
|
[4] |
DeMille D 2002 Phys. Rev. Lett. 88 067901
|
[5] |
Lee C and Ostrovskaya E A 2005 Phys. Rev. A 72 062321
|
[6] |
Krems R V 2005 Int. Rev. Phys. Chem. 24 99
|
[7] |
Krems R V 2004 Phys. Rev. Lett. 93 013201
|
[8] |
Schiller S 2007 Phys. Rev. Lett. 98 180801
|
[9] |
Demille D, Sainis S, Sage J, Bergeman T, Kotochigova S and Tiesinga E 2008 Phys. Rev. Lett. 100 043202
|
[10] |
Zelevinsky T, Kotochigova S and Ye J 2008 Phys. Rev. Lett. 100 043201
|
[11] |
Hudson E R, Lewandowski H J, Sawyer B C and Ye J 2006 Phys. Rev. Lett. 96 143004
|
[12] |
Bohn J L, Rey A M and Ye J 2017 Science 357 1002
|
[13] |
Dhont G S F, Lenthe J H V, Groenenboom G C and van der Avoird A 2005 J. Chem. Phys. 123 184302
|
[14] |
Janssen L M C, Groenenboom G C, van der Avoird A, Żuchowski P S and Podeszwa R 2009 J. Chem. Phys. 131 224314
|
[15] |
Manai I, Horchani R, Lignier H, Pillet P and Comparat D 2012 Phys. Rev. Lett. 109 183001
|
[16] |
Zhelyazkova V, Cournol A, Wall T E, Matsushima A, Hudson J J, Hinds E A, Tarbutt M R and Sauer B E 2014 Phys. Rev. A 89 053416
|
[17] |
Wan M G, Yuan D, Jin C G, Wang F H, Yang Y J, Yu Y and Shao J X 2016 J. Chem. Phys. 145 024309
|
[18] |
Bethlem H L, Berden G and Meijer G 1999 Phys. Rev. Lett. 83 1558
|
[19] |
Bochinski J R, Hudson E R, Lewandowski H J, Meijer G and Ye J 2003 Phys. Rev. Lett. 91 243001
|
[20] |
Hudson E R, Ticknor C, Sawyer B C, Taatjes C A, Lewandowski H J, Bochinski J R, Bohn J L and Ye J 2006 Phys. Rev. A 73 063404
|
[21] |
van de Meerakker S Y T, Labazan I, Hoekstra S, Küpper J and Meijer G 2006 J. Phys. B: At. Mol. Opt. Phys. 39 S1077
|
[22] |
Narevicius E, Libson A, Parthey C G, Chavez I, Narevicius J, Even U and Raizen M G 2008 Phys. Rev. Lett. 100 093003
|
[23] |
Wiederkehr A W, Hogan S D and Merkt F 2010 Phys. Rev. A 82 043428
|
[24] |
Vanhaecke N, Meier U, Andrist M, Meier B H and Merkt F 2007 Phys. Rev. A 75 031402
|
[25] |
Doyle J M, Friedrich B, Kim J and Patterson D 1995 Phys. Rev. A 52 R2515
|
[26] |
Bethlem H L, Berden G, Crompvoets F M H, Jongma R T, van Roij A J and Meijer G 2000 Nature 406 491
|
[27] |
Zeppendeld M, Motsch M, Pinkse P W H and Rempe G 2009 Phys. Rev. A 80 041401
|
[28] |
Prehn A, Ibrügger M, Glöckner R, Rempe G and Zeppendeld M 2016 Phys. Rev. Lett. 116 063005
|
[29] |
Steinecker M H, McCarron D J, Zhu Y Q and DeMille D 2016 Chem. Phys. Chem. 17 22
|
[30] |
Norrgard E B, McCarron D J, Steinecker M H, Tarbutt M R and DeMille D 2016 Phys. Rev. Lett. 116 063004
|
[31] |
McCarron D J, Norrgard E B, Steinecker M H and DeMille D 2015 New J. Phys. 17 035014
|
[32] |
Williams H J, Truppe S, Hambach M, Caldwell L, Fitch N J, Hinds E A, Sauer B E and Tarbutt M R 2017 New J. Phys. 19 113035
|
[33] |
Tokunaga S K, Dyne J K, Hinds E A and Tarbutt M R 2009 New. J. Phys. 11 055038
|
[34] |
Bethlem H L, Crompvoets F M H, Jongma R T, van de Meerakker S Y T and Meijer G 2002 Phys. Rev. A 65 053416
|
[35] |
Bethlem H L, van Roij A J, Jongma R T and Meijer G 2002 Phys. Rev. Lett. 88 133003
|
[36] |
Wall T E, Kanem J F, Dyne J M, Hudson J J, Sauer B E, Hinds E A and Tarbutt M R 2011 Phys. Chem. Chem. Phys. 13 18991
|
[37] |
Huang Y X, Xu S W and Yang X H 2016 J. Phys. B: At. Mol. Opt. Phys. 49 135101
|
[38] |
Chen K, Huang Y X and Yang X H 2017 Chin. J. Chem. Phys. 30 418
|
[39] |
Hanna D C, Yuratich M A and Cotter D 1979 Nonlinear optics of free atoms, molecules (Berlin: Springer-Verlag)
|
[40] |
Fieid R W, Harris D O and Tanaka T 1975 J. Mol. Spectrosc. 57 107
|
[41] |
Nakagawa J, Domaille P J, Steimle T C and Harris D O 1978 J. Mol. Spectrosc. 70 374
|
[42] |
Childs W J, Goodman L S, Nielsen U and Pfeufer V 1984 J. Chem. Phys. 80 062283
|
[43] |
Wall T E, Kanem J F, Hudson J J, Sauer B E, Cho D, Boshier M G, Hinds E A and Tarbutt M R 2008 Phys. Rev. A 78 062509
|
[44] |
Raouafi S, Jeung G H and Jungen C 2001 J. Chem. Phys. 115 7450
|
[45] |
Hemmerling B, Chae E, Ravi A, Anderegg L, Drayna G K, Hutzler N R, Collopy A L, Ye J, Ketterle W and Doyle J M 2016 J. Phys. B: At. Mol. Opt. Phys. 49 174001
|
[46] |
Lu H, Rasmussen J, Wright M J, Patterson D and Doyle J M 2011 Phys. Chem. Chem. Phys. 13 18986
|
[47] |
Anderegg L, Augenbraun B L, Chae E, Hemmerling B, Hutzler N R, Ravi A, Collopy A L, Ye J, Ketterle W and Doyle J M 2017 Phys. Rev. Lett. 119 103201
|
[48] |
Wu H, Reens D, Langen T, Shagam Y, Fontecha D and Ye J 2018 Phys. Chem. Chem. Phys. 20 11615
|
[49] |
Tarbutt M R and Steimle T C 2015 Phys. Rev. A 92 053401
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|