Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(8): 086803    DOI: 10.1088/1674-1056/27/8/086803
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

The properties of surface nanobubbles formed on different substrates

Zheng-Lei Zou(邹正磊)1,3, Nan-Nan Quan(权楠楠)1,3, Xing-Ya Wang(王兴亚)3,4, Shuo Wang(王硕)2,4, Li-Min Zhou(周利民)2,4, Jun Hu(胡钧)2, Li-Juan Zhang(张立娟)3, Ya-Ming Dong(董亚明)1
1 Life and Environment Science College, Shanghai Normal University, Shanghai 200234, China;
2 Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China;
3 Shanghai Synchrotron Radiation Facility, Shanghai 201204, China;
4 University of Chinese Academy of Sciences, Beijing 100049, China
Abstract  

The properties and stability of the reported surface nanobubbles are related to the substrate used and the generation method. Here, we design a series of experiments to study the influence of the hydrophobicity of the substrate and the production method on the formation and properties of nanobubbles. We choose three different substrates, dodecyltrichlorosilane (DTS) modified silicon, octadecyltrichlorosilane (OTS) modified silicon, and highly oriented pyrolytic graphite (HOPG) as nanobubble substrates, and two methods of ethanol-water exchange and 4-℃ cold water to produce nanobubbles. It is found that using ethanol-water exchange method could produce more and larger nanobubbles than the 4-℃ cold water method. The contact angle of nanobubbles produced by ethanol-water exchange depends on the hydrophobicity of substrates, and decreases with the increase of the hydrophobicity of substrates. More interestingly, nanoscopic contact angle approaches the macroscopic contact angle as the hydrophobicity of substrates increases. It is believed that these results would be very useful to understand the stability of surface nanobubbles.

Keywords:  nanobubbles      atomic force microscopy      contact angle      hydrophobic modification  
Received:  23 March 2018      Revised:  30 May 2018      Accepted manuscript online: 
PACS:  68.08.Bc (Wetting)  
  81.07.-b (Nanoscale materials and structures: fabrication and characterization)  
  68.37.Ps (Atomic force microscopy (AFM))  
  81.65.-b (Surface treatments)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 11290165, 11305252, and U1532260), the Knowledge Innovation Program of the Chinese Academy of Sciences, China (Grant No. KJZD-EW-M03), and the Key Research Program of Frontier Sciences, Chinese Academy of Sciences, China (Grant No. QYZDJ-SSW-SLH019).

Corresponding Authors:  Li-Juan Zhang, Ya-Ming Dong     E-mail:  zhanglijuan@sinap.ac.cn;ymdong@shnu.edu.cn

Cite this article: 

Zheng-Lei Zou(邹正磊), Nan-Nan Quan(权楠楠), Xing-Ya Wang(王兴亚), Shuo Wang(王硕), Li-Min Zhou(周利民), Jun Hu(胡钧), Li-Juan Zhang(张立娟), Ya-Ming Dong(董亚明) The properties of surface nanobubbles formed on different substrates 2018 Chin. Phys. B 27 086803

[1] Wu Z, Chen H, Dong Y, Mao H, Sun J, Chen S, Craig V S and Hu J 2008 J. Colloid Interface Sci. 328 10
[2] Sobhy A and Tao D 2013 Int. J. Miner. Process. 124 109
[3] Ebina K, Shi K, Hirao M, Hashimoto J, Kawato Y, Kaneshiro S, Morimoto T, Koizumi K and Yoshikawa H 2013 PLoS One 8 e65339
[4] Zhu J, An H, Alheshibri M, Liu L, Terpstra P M, Liu G and Craig V S 2016 Langmuir 32 11203
[5] Plesset M S and Sadhal S S 1982 Appl. Sci. Res. 38 133
[6] Wang X, Zhao B, Ma W, Wang Y, Gao X, Tai R, Zhou X and Zhang L 2015 ChemPhysChem. 16 1003
[7] Wang L, Wang X, Wang L, Hu J, Wang C L, Zhao B, Zhang X, Tai R, He M, Chen L and Zhang L 2017 Nanoscale 9 1078
[8] Borkent B M, De B S, Mugele F and Lohse D 2010 Langmuir 26 260
[9] Limbeek M A J V and Seddon J R T 2011 Langmuir 27 8694
[10] Berkelaar R P, Seddon J R, Zandvliet H J and Lohse D 2012 ChemPhysChem. 13 2213
[11] Zhao R and Liang Z C 2016 Chin. Phys. B 25 066801
[12] Zhang L, Zhang Y, Zhang X, Li Z, Shen G, Ye M, Fan C, Fang H and Hu J 2006 Langmuir 22 8109
[13] Kameda N and Nakabayashi S 2008 Chem. Phys. Lett. 461 122
[14] Abhinandan Agrawal, Juhyun Park, Du Yeol Ryu, Hammend T, Russell P and Mckinley H 2005 Nano Lett. 5 1751
[15] Otelaja O, Gatica S and Misra P APS March Meeting
[16] Xu C, Peng S, Qiao G G, Gutowski V, Lohse D and Zhang X 2014 Soft Matter 10 7857
[17] Lou S, Gao J, Xiao X, Li X, Li G, Zhang Y, Li M, Sun J, Li X and Hu J 2002 Mater. Charact. 48 211
[18] Zhou L M , Wang S, Qiu J, Wang L, Wang X Y, Li B, Zhang L J and Hu J 2017 Chin. Phys. B 26 106803
[19] Zhang X H, Maeda N and Craig V S 2006 Langmuir 22 5025
[20] Wang X L, Di Q F, Zhang R L, Gu C Y, Ding W P and Gong W 2012 Acta Phys. Sin. 61 166801 (in Chinese)
[21] Ishida N, Inoue T, Miyahara M and Higashitani K 2000 Langmuir 16 6377
[22] Lohse D and Zhang X 2015 Rev. Mod. Phys. 87 981
[23] Zhang X H, Zhang X D, Lou S T, Zhang Z X, Sun J L and Hu J 2004 Langmuir 20 3813
[24] Lou S T, Ouyang Z Q, Zhang Y, Li X J, Hu J, Li M Q and Yang F J 2000 J. Vac. Sci. Technol. B 18 2573
[25] Ji C, Zhang L Y, Dou S X and Wang P Y 2011 Acta Phys. Sin. 60 1358 (in Chinese)
[26] Zhao B, Song Y, Wang S, Dai B, Zhang L, Dong Y, Lü J and Hu J 2013 Soft Matter 9 8837
[27] Walczyk W, Schon P M and Schonherr H 2013 J. Phys.: Condens. Matter. 25 184005
[28] Walczyk W and Schonherr H 2013 Langmuir 29 620
[29] Lohse D and Zhang X 2015 Phys. Rev. E 91 031003
[30] Liu Y and Zhang X 2014 J. Chem. Phys. 141 8468
[1] Formation of nanobubbles generated by hydrate decomposition: A molecular dynamics study
Zilin Wang(王梓霖), Liang Yang(杨亮), Changsheng Liu(刘长生), and Shiwei Lin(林仕伟). Chin. Phys. B, 2023, 32(2): 023101.
[2] Adaptive semi-empirical model for non-contact atomic force microscopy
Xi Chen(陈曦), Jun-Kai Tong(童君开), and Zhi-Xin Hu(胡智鑫). Chin. Phys. B, 2022, 31(8): 088202.
[3] Water contact angles on charged surfaces in aerosols
Yu-Tian Shen(申钰田), Ting Lin(林挺), Zhen-Ze Yang(杨镇泽), Yong-Feng Huang(黄永峰), Ji-Yu Xu(徐纪玉), and Sheng Meng(孟胜). Chin. Phys. B, 2022, 31(5): 056801.
[4] On-surface synthesis of one-dimensional carbyne-like nanostructures with sp-carbon
Wenze Gao(高文泽), Chi Zhang(张弛), Zheng Zhou(周正), and Wei Xu(许维). Chin. Phys. B, 2022, 31(12): 128101.
[5] Enrichment of microplastic pollution by micro-nanobubbles
Jing Wang(王菁), Zihan Wang(王子菡), Fangyuan Pei(裴芳源), and Xingya Wang(王兴亚). Chin. Phys. B, 2022, 31(11): 118104.
[6] Substrate tuned reconstructed polymerization of naphthalocyanine on Ag(110)
Qi Zheng(郑琦), Li Huang(黄立), Deliang Bao(包德亮), Rongting Wu(武荣庭), Yan Li(李彦), Xiao Lin(林晓), Shixuan Du(杜世萱), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2022, 31(1): 018202.
[7] Fabrication of sulfur-doped cove-edged graphene nanoribbons on Au(111)
Huan Yang(杨欢), Yixuan Gao(高艺璇), Wenhui Niu(牛雯慧), Xiao Chang(常霄), Li Huang(黄立), Junzhi Liu(刘俊治), Yiyong Mai(麦亦勇), Xinliang Feng(冯新亮), Shixuan Du(杜世萱), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2021, 30(7): 077306.
[8] Moiré superlattice modulations in single-unit-cell FeTe films grown on NbSe2 single crystals
Han-Bin Deng(邓翰宾), Yuan Li(李渊), Zili Feng(冯子力), Jian-Yu Guan(关剑宇), Xin Yu(于鑫), Xiong Huang(黄雄), Rui-Zhe Liu(刘睿哲), Chang-Jiang Zhu(朱长江), Limin Liu(刘立民), Ying-Kai Sun(孙英开), Xi-Liang Peng(彭锡亮), Shuai-Shuai Li(李帅帅), Xin Du(杜鑫), Zheng Wang(王铮), Rui Wu(武睿), Jia-Xin Yin(殷嘉鑫), You-Guo Shi(石友国), and Han-Qing Mao(毛寒青). Chin. Phys. B, 2021, 30(12): 126801.
[9] Dielectrowetting actuation of droplet: Theory and experimental validation
Yayan Huang(黄亚俨), Rui Zhao(赵瑞), Zhongcheng Liang(梁忠诚), Yue Zhang(张月), Meimei Kong(孔梅梅), and Tao Chen(陈陶). Chin. Phys. B, 2021, 30(10): 106801.
[10] Molecular simulation study of the adhesion work for water droplets on water monolayer at room temperature
Mengyang Qu(屈孟杨), Bo Zhou(周波), and Chunlei Wang(王春雷). Chin. Phys. B, 2021, 30(10): 106804.
[11] Influence of fluoroethylene carbonate on the solid electrolyte interphase of silicon anode for Li-ion batteries: A scanning force spectroscopy study
Jieyun Zheng(郑杰允), Jialiang Liu(刘家亮), Suijun Wang(王绥军), Fei Luo(罗飞), Liubin Ben(贲留斌), Hong Li(李泓). Chin. Phys. B, 2020, 29(4): 048203.
[12] Atomic-level characterization of liquid/solid interface
Jiani Hong(洪嘉妮) and Ying Jiang(江颖). Chin. Phys. B, 2020, 29(11): 116803.
[13] Wetting failure condition on rough surfaces
Feng-Chao Yang(杨冯超), Xiao-Peng Chen(陈效鹏). Chin. Phys. B, 2019, 28(4): 044701.
[14] Improvement of the high-κ/Ge interface thermal stability using an in-situ ozone treatment characterized by conductive atomic force microscopy
Ji-Bin Fan(樊继斌), Xiao-Jiao Cheng(程晓姣), Hong-Xia Liu(刘红侠), Shu-Long Wang(王树龙), Li Duan(段理). Chin. Phys. B, 2017, 26(8): 087701.
[15] A multicomponent multiphase lattice Boltzmann model with large liquid-gas density ratios for simulations of wetting phenomena
Qing-Yu Zhang(张庆宇), Dong-Ke Sun(孙东科), Ming-Fang Zhu(朱鸣芳). Chin. Phys. B, 2017, 26(8): 084701.
No Suggested Reading articles found!