Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(10): 106804    DOI: 10.1088/1674-1056/ac192d
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Molecular simulation study of the adhesion work for water droplets on water monolayer at room temperature

Mengyang Qu(屈孟杨)1,2, Bo Zhou(周波)3,†, and Chunlei Wang(王春雷)1,4,‡
1 Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China;
2 University of Chinese Academy of Sciences, Beijing 100049, China;
3 School of Electronic Engineering, Chengdu Technological University, Chengdu 611730, China;
4 Zhangjiang Laboratory, Interdisplinary Research Center, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
Abstract  The wetting phenomenon of water droplets coexisting with the ordered water monolayer termed an unexpected phenomenon of “water that does not wet a water monolayer” at room temperature has been found on several solid surfaces. Although the hydrogen bond saturation inside the monolayer can qualitatively describe this phenomenon, whether the Young-Dupré equation still holds under this unconventional wetting framework is still not answered. In this work, we have calculated the contact angle values of the droplets as well as the work of adhesion between the droplets and the monolayer based on an extended phantom-wall method. The results show that similar to the conventional solid-liquid interface, classical Young-Dupré equation is also applicable for the interface of liquid water and ordered water monolayer.
Keywords:  wetting      work of adhesion      contact angle      water  
Received:  19 June 2021      Revised:  09 July 2021      Accepted manuscript online:  30 July 2021
PACS:  68.08.Bc (Wetting)  
  68.35.Np (Adhesion)  
  68.08.-p (Liquid-solid interfaces)  
  68.05.Cf (Liquid-liquid interface structure: measurements and simulations)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12022508 and 12074394) and Sichuan Science and Technology Program (Grant No. 2017YJ0174).
Corresponding Authors:  Bo Zhou, Chunlei Wang     E-mail:  bozhou@zju.edu.cn;wangchunlei@zjlab.org.cn

Cite this article: 

Mengyang Qu(屈孟杨), Bo Zhou(周波), and Chunlei Wang(王春雷) Molecular simulation study of the adhesion work for water droplets on water monolayer at room temperature 2021 Chin. Phys. B 30 106804

[1] Godawat R, Jamadagni S N and Garde S 2009 Proc. Natl. Acad. Sci. 106 15119
[2] Giovambattista N, Rossky P J and Debenedetti P G 2012 Ann. Rev. Phys. Chem. 63 179
[3] Giovambattista N, Debenedetti P G and Rossky P J 2009 Proc. Natl. Acad. Sci. 106 15181
[4] Mayrhofer L, Moras G, Mulakaluri N, Rajagopalan S and Stevens P A 2016 J. Am. Chem. Soc. 138 4018
[5] Maier S and Salmeron M 2015 Acc. Chem. Res. 48 2783
[6] Ball P 2016 Nat. Phys. 12 718
[7] Chandler D 2005 Nature 437 640
[8] Zhu C, Li H, Huang Y, Zeng X C and Meng S 2013 Phys. Rev. Lett. 110 126101
[9] Martins D M, Molinari M, Goncalves M A, Mirao J P and Parker S C 2014 J. Phys. Chem. C 118 27308
[10] Guo P, Tu Y, Yang J, Wang C, Sheng N and Fang H 2015 Phys. Rev. Lett. 115 186101
[11] Quéré D 2008 Ann. Rev. Mater. Res. 38 71
[12] Wang L, Wang F, Yang F and Wu H 2014 Sci. China-Phys. Mech. Astron. 57 2152
[13] Fan J, De Coninck J, Wu H and Wang F 2020 Phys. Rev. Lett. 124 125502
[14] Duan M, Song B, Shi G, Li H, Ji G, Hu J, Chen X and Fang H 2012 J. Am. Chem. Soc. 134 12104
[15] Wan R, Li J, Lu H and Fang H 2005 J. Am. Chem. Soc. 127 7166
[16] Wang C, Zhou B, Tu Y, Duan M, Xiu P, Li J and Fang H 2012 Sci. Rep. 2 1
[17] Alexiadis A and Kassinos S 2008 Chem. Rev. 108 5014
[18] Shen Y R 2013 Ann. Rev. Phys. Chem. 64 129
[19] Zaera F 2012 Chem. Rev. 112 2920
[20] Kimmel G A, Petrik N G, Dohnálek Z and Kay B D 2005 Phys. Rev. Lett. 95 166102
[21] Hu J, Xiao X D, Ogletree D F and Salmeron M 1995 Science 268 267
[22] Michaelides A, Alavi A and King D A 2004 Phys. Rev. B 69 113404
[23] Cheng L, Fenter P, Nagy K L, Schlegel M L and Sturchio N C 2001 Phys. Rev. Lett. 87 156103
[24] Wang C, Zhou B, Xiu P and Fang H 2011 J. Phys. Chem. C 115 3018
[25] Wang C, Lu H, Wang Z, Xiu P, Zhou B, Zuo G, Wan R, Hu J and Fang H 2009 Phys. Rev. Lett. 103 137801
[26] Xu Z, Gao Y, Wang C and Fang H 2015 J. Phys. Chem. C 119 20409
[27] Limmer D T, Willard A P, Madden P and Chandler D 2013 Proc. Natl. Acad. Sci. 110 4200
[28] Zhou G, Schoen B H, Yang Z and Huang L 2019 J. Phys. Chem. C 124 4057
[29] Phan A, Ho T A, Cole D R and Striolo A 2012 J. Phys. Chem. C 116 15962
[30] Rotenberg B, Patel A J and Chandler D 2011 J. Am. Chem. Soc. 133 20521
[31] Young T 1805 Ⅲ Philos. Trans. R. Soc. Lond. 65
[32] Leroy F, dos Santos D J and Müller-Plathe F 2009 Macromol. Rapid Commun. 30 864
[33] Surblys D, Yamaguchi Y, Kuroda K, Kagawa M, Nakajima T and Fujimura H 2014 J. Chem. Phys. 140 034505
[34] Leroy F and Müller-Plathe F 2010 J. Chem. Phys. 133 044110
[35] Leroy F and Müller-Plathe F 2015 Langmuir 31 8335
[36] Surblys D, Leroy F, Yamaguchi Y and Müller-Plathe F 2018 J. Chem. Phys. 148 134707
[37] Leroy F, Liu S and Zhang J 2015 J. Phys. Chem. C 119 28470
[38] Ardham V R, Deichmann G, van der Vegt N F and Leroy F 2015 J. Chem. Phys. 143 243135
[39] Marmur A 1997 J. Colloid Interface Sci. 186 462
[40] Abraham M J, Murtola T, Schulz R, Páll S, Smith J C, Hess B and Lindahl E 2015 SoftwareX 1 19
[41] Berendsen H J C, Grigera J R and Straatsma T P 1987 J. Phys. Chem. 91 6269
[42] Darden T, York D and Pedersen L 1993 J. Chem. Phys. 98 10089
[43] Vega C and de Miguel E 2007 J. Chem. Phys. 126 154707
[44] Wang S W, Peng L, Chen J W and Li L 2021 Chin. Phys. B 30 046501
[45] Cong S, Liu X, Jiang Y, Zhang W and Zhao Z 2020 The Innovation 1 100051
[1] A theoretical study of fragmentation dynamics of water dimer by proton impact
Zhi-Ping Wang(王志萍), Xue-Fen Xu(许雪芬), Feng-Shou Zhang(张丰收), and Xu Wang(王旭). Chin. Phys. B, 2023, 32(3): 033401.
[2] Blue phosphorene/MoSi2N4 van der Waals type-II heterostructure: Highly efficient bifunctional materials for photocatalytics and photovoltaics
Xiaohua Li(李晓华), Baoji Wang(王宝基), and Sanhuang Ke(柯三黄). Chin. Phys. B, 2023, 32(2): 027104.
[3] Theoretical study of M6X2 and M6XX' structure (M = Au, Ag; X,X' = S, Se): Electronic and optical properties, ability of photocatalytic water splitting, and tunable properties under biaxial strain
Jiaqi Li(李嘉琪), Xinlu Cheng(程新路), and Hong Zhang(张红). Chin. Phys. B, 2022, 31(9): 097101.
[4] Influence of water environment on paint removal and the selection criteria of laser parameters
Li-Jun Zhang(张丽君), Kai-Nan Zhou(周凯南), Guo-Ying Feng(冯国英), Jing-Hua Han(韩敬华),Na Xie(谢娜), and Jing Xiao(肖婧). Chin. Phys. B, 2022, 31(6): 064205.
[5] Acoustic multipath structure in direct zone of deep water and bearing estimation of tow ship noise of towed line array
Zhi-Bin Han(韩志斌), Zhao-Hui Peng (彭朝晖), Jun Song(宋俊), Lei Meng(孟雷), Xiu-Ting Yang(杨秀庭), and Bing Su(苏冰). Chin. Phys. B, 2022, 31(5): 054301.
[6] Nanobubbles produced by hydraulic air compression technique
Xiaodong Yang(杨晓东), Qingfeng Yang(杨庆峰), Limin Zhou(周利民),Lijuan Zhang(张立娟), and Jun Hu(胡钧). Chin. Phys. B, 2022, 31(5): 054702.
[7] Water contact angles on charged surfaces in aerosols
Yu-Tian Shen(申钰田), Ting Lin(林挺), Zhen-Ze Yang(杨镇泽), Yong-Feng Huang(黄永峰), Ji-Yu Xu(徐纪玉), and Sheng Meng(孟胜). Chin. Phys. B, 2022, 31(5): 056801.
[8] Characteristics of vapor based on complex networks in China
Ai-Xia Feng(冯爱霞), Qi-Guang Wang(王启光), Shi-Xuan Zhang(张世轩), Takeshi Enomoto(榎本刚), Zhi-Qiang Gong(龚志强), Ying-Ying Hu(胡莹莹), and Guo-Lin Feng(封国林). Chin. Phys. B, 2022, 31(4): 049201.
[9] Quantum watermarking based on threshold segmentation using quantum informational entropy
Jia Luo(罗佳), Ri-Gui Zhou(周日贵), Wen-Wen Hu(胡文文), YaoChong Li(李尧翀), and Gao-Feng Luo(罗高峰). Chin. Phys. B, 2022, 31(4): 040302.
[10] Effect of an electric field on dewetting transition of nitrogen-water system
Qi Feng(冯琦), Jiaxian Li(厉嘉贤), Xiaoyan Zhou(周晓艳), and Hangjun Lu(陆杭军). Chin. Phys. B, 2022, 31(3): 036801.
[11] Impact of microsecond-pulsed plasma-activated water on papaya seed germination and seedling growth
Deng-Ke Xi(席登科), Xian-Hui Zhang(张先徽), Si-Ze Yang(杨思泽), Seong Shan Yap(叶尚姗), Kenji Ishikawa(石川健治), Masura Hori (堀勝), and Seong Ling Yap(叶尚凌). Chin. Phys. B, 2022, 31(12): 128201.
[12] A study of cavitation nucleation in pure water using molecular dynamics simulation
Hua Xie(谢华), Yuequn Xu(徐跃群), and Cheng Zhong(钟成). Chin. Phys. B, 2022, 31(11): 114701.
[13] Water adsorption performance of UiO-66 modified by MgCl2 for heat transformation applications
Jia-Li Liu(刘佳丽), Guo-Dong Fu(付国栋), Ping Wu(吴平), Shang Liu(刘尚), Jin-Guang Yang(杨金光), Shi-Ping Zhang(张师平), Li Wang(王立), Min Xu(许闽), and Xiu-Lan Huai(淮秀兰). Chin. Phys. B, 2022, 31(11): 118101.
[14] Parallel optimization of underwater acoustic models: A survey
Zi-jie Zhu(祝子杰), Shu-qing Ma(马树青), Xiao-Qian Zhu(朱小谦), Qiang Lan(蓝强), Sheng-Chun Piao(朴胜春), and Yu-Sheng Cheng(程玉胜). Chin. Phys. B, 2022, 31(10): 104301.
[15] Aperture-averaged scintillation index and fade statistics in weak oceanic turbulence
Hao Wang(王昊), Fu-Zeng Kang(康福增), Xuan Wang(王瑄), Wei Zhao(赵卫), and Shu-Wei Sun(孙枢为). Chin. Phys. B, 2021, 30(6): 064207.
No Suggested Reading articles found!