Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(7): 070703    DOI: 10.1088/1674-1056/27/7/070703
Special Issue: TOPICAL REVIEW — SECUF: Breakthroughs and opportunities for the research of physical science
TOPICAL REVIEW—SECUF: Breakthroughs and opportunities for the research of physical science Prev   Next  

Ultrafast electron microscopy in material science

Huaixin Yang(杨槐馨)1,2, Shuaishuai Sun(孙帅帅)1, Ming Zhang(张明)1,2, Zhongwen Li(李中文)1,2, Zian Li(李子安)1, Peng Xu(徐鹏)1, Huanfang Tian(田焕芳)1, Jianqi Li(李建奇)1,2,3
1 Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
2 School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China;
3 Collaborative Innovation Center of Quantum Matter, Beijing 100084, China
Abstract  Recent advances in the ultrafast transmission electron microscope (UTEM), with combined spatial and temporal resolutions, have made it possible to directly visualize the atomic, electronic, and magnetic structural dynamics of materials. In this review, we highlight the recent progress of UTEM techniques and their applications to a variety of material systems. It is emphasized that numerous significant ultrafast dynamic issues in material science can be solved by the integration of the pump-probe approach with the well-developed conventional transmission electron microscopy (TEM) techniques. For instance, UTEM diffraction experiments can be performed to investigate photoinduced atomic-scale dynamics, including the chemical reactions, non-equilibrium phase transition/melting, and lattice phonon coupling. UTEM imaging methods are invaluable for studying, in real space, the elementary processes of structural and morphological changes, as well as magnetic-domain evolution in the Lorentz TEM mode, at a high magnification. UTEM electron energy-loss spectroscopic techniques allow the examination of the ultrafast valence states and electronic structure dynamics, while photoinduced near-field electron microscopy extends the capability of the UTEM to the regime of electromagnetic-field imaging with a high real space resolution.
Keywords:  ultrafast transmission electron microscope (UTEM)      structural dynamics      electron diffraction      ultrafast imaging  
Received:  03 April 2018      Revised:  12 May 2018      Accepted manuscript online: 
PACS:  07.78.+s (Electron, positron, and ion microscopes; electron diffractometers)  
  61.05.J- (Electron diffraction and scattering)  
  63.20.-e (Phonons in crystal lattices)  
  64.70.-p (Specific phase transitions)  
Corresponding Authors:  Jianqi Li     E-mail:  ljq@iphy.ac.cn

Cite this article: 

Huaixin Yang(杨槐馨), Shuaishuai Sun(孙帅帅), Ming Zhang(张明), Zhongwen Li(李中文), Zian Li(李子安), Peng Xu(徐鹏), Huanfang Tian(田焕芳), Jianqi Li(李建奇) Ultrafast electron microscopy in material science 2018 Chin. Phys. B 27 070703

[1] Chergui M and Zewail A H 2009 Chemphyschem:A Eur. J. Chem. Phys. Phys. Chem. 10 28
[2] Yang L X, Rohde G, Rohwer T, Stange A, Hanff K, Sohrt C, Rettig L, Cortes R, Chen F, Feng D L, Wolf T, Kamble B, Eremin I, Popmintchev T, Murnane M M, Kapteyn H C, Kipp L, Fink J, Bauer M, Bovensiepen U and Rossnagel K 2014 Phys. Rev. Lett. 112 207001
[3] Sun D, Lai J W, Ma J C, Wang Q S and Liu J 2017 Chin. Phys. B 26 037801
[4] Dahms F, Fingerhut B P, Nibbering E T J, Pines E and Elsaesser T 2017 Science 357 491
[5] Bostedt C, Boutet S, Fritz D M, Huang Z R, Lee H J, Lemke H T, Robert A, Schlotter W F, Turner J J and Williams G J 2016 Rev. Mod. Phys. 88 015007
[6] Rettig L, Mariager S O, Ferrer A, Grubel S, Johnson J A, Rittmann J, Wolf T, Johnson S L, Ingold G, Beaud P and Staub U 2015 Phys. Rev. Lett. 114 067402
[7] Zewail A H 2009 4D Electron Microscopy Imaging in Space and Time (Imperial College Press)
[8] Domer H and Bostanjoglo O 2003 Rev. Sci. Instrum. 74 4369
[9] Zewail A H 2010 Science 328 187
[10] Browning N D, Bonds M A, Campbell G H, Evans J E, LaGrange T, Jungjohann K L, Masiel D J, McKeown J, Mehraeen S, Reed B W and Santala M 2012 Curr. Opinion Solid State Mater. Sci. 16 23
[11] Cao G L, Sun S S, Li Z W, Tian H F, Yang H X and Li J Q 2015 Sci. Rep.-Uk 5 8404
[12] Park H S, Baskin J S, Kwon O H and Zewail A H 2007 Nano Lett. 7 2545
[13] Brett Barwick H S P, Oh-Hoon Kwon, J Spencer Baskin and Ahmed H Zewail 2008 Science 1227
[14] Bostanjoglo O 2002 Adv. Imaging Electron. Phys. 121 1
[15] Hassan M T, Baskin J S, Liao B and Zewail A H 2017 Nat. Photon. 11 425
[16] Shorokhov D and Zewail A H 2009 J. Am. Chem. Soc. 131 17998
[17] Barwick B, Flannigan D J and Zewail A H 2009 Nature 462 902
[18] Batson P E 2011 Proc. Natl. Academy Sci. United States Am. 108 3099
[19] Flannigan D J, Barwick B and Zewail A H 2010 Proc. Natl. Academy Sci. United States Am. 107 9933
[20] Flannigan D J, Park S T and Zewail A H 2010 Nano Lett. 10 4767
[21] King W E, Campbell G H, Frank A, Reed B, Schmerge J F, Siwick B J, Stuart B C and Weber P M 2005 J. Appl. Phys. 97 111101
[22] Lobastov V A, Srinivasan R and Zewail A H 2005 Proc. Natl. Academy Sci. United States Am. 102 7069
[23] Miller R J, Ernstorfer R, Harb M, Gao M, Hebeisen C T, Jean-Ruel H, Lu C, Moriena G and Sciaini G 2010 Acta Crystallogr. Sect. A:Found. Crystallogr. 66 137
[24] Shorokhov D and Zewail A H 2008 Phys. Chem. Chem. Phys.:PCCP 10 2879
[25] Thomas J M 2005 Angew. Chem. 44 5563
[26] Vanacore G M, Fitzpatrick A W P and Zewail A H 2016 Nano Today 11 228
[27] Zewail A H 2006 Annu. Rev. Phys. Chem. 57 65
[28] Zewail A H 2010 Philos. Trans. Ser. A:Math. Phys. Eng. Sci. 368 1191
[29] Ziegler A 2011 MRS Bull. 36 121
[30] Carbone F 2011 Eur. Phys. J.-Appl. Phys. 54 33503
[31] Plemmons D A, Suri P K and Flannigan D J 2015 Chem. Mater. 27 3178
[32] Carbone F 2010 Chem. Phys. Lett. 496 291
[33] Piazza L, Ma C, Yang H X, Mann A, Zhu Y, Li J Q and Carbone F 2014 Structural Dyn. 1 014501
[34] Bucker K, Picher M, Cregut O, LaGrange T, Reed B W, Park S T, Masiel D J and Banhart F 2016 Ultramicroscopy 171 8
[35] Lee Y M, Kim Y J, Kim Y J and Kwon O H 2017 Structural Dyn. 4 044023
[36] Ji S, Piazza L, Cao G, Park S T, Reed B W, Masiel D J and Weissenrieder J 2017 Structural Dyn. 4 054303
[37] Andreev S V, Aseev S A, Bagratashvili V N, Vorob'ev N S, Ishchenko A A, Kompanets V O, Malinovskii A L, Mironov B N, Timofeev A A, Chekalin S V, Shashkov E V and Ryabov E A 2017 Quantum Electron 47 116
[38] Kieft E, Schliep K B, Suri P K and Flannigan D J 2015 Structural Dyn. 2 051101
[39] Petruk A A, Pichugin K and Sciaini G 2017 Structural Dyn. 4 044005
[40] Plemmons D A and Flannigan D J 2017 Chem. Phys. Lett. 683 186
[41] Piazza L, Masiel D J, LaGrange T, Reed B W, Barwick B and Carbone F 2013 Chem. Phys. 423 79
[42] Yurtsever A and Zewail A H 2009 Science 326 708
[43] Park S T, Flannigan D J and Zewail A H 2011 J. Am. Chem. Soc. 133 1730
[44] Park S T, Flannigan D J and Zewail A H 2012 J. Am. Chem. Soc. 134 9146
[45] Grinolds M S, Lobastov V A, Weissenrieder J and Zewail A H 2006 Proc. Natl. Academy Sci. United States Am. 103 18427
[46] Li Z W, Sun S S, Li Z A, Zhang M, Cao G L, Tian H F, Yang H X and Li J Q 2017 Nanoscale 9 13313
[47] Eichberger M, Schafer H, Krumova M, Beyer M, Demsar J, Berger H, Moriena G, Sciaini G and Miller R J D 2010 Nature 468 799
[48] Sun S S, Wei L L, Li Z W, Cao G L, Liu Y, Lu W J, Sun Y P, Tian H F, Yang H X and Li J Q 2015 Phys. Rev. B 92 224303
[49] Wei L L, Sun S S, Guo C, Li Z W, Sun K, Liu Y, Lu W J, Sun Y P, Tian H F, Yang H X and Li J Q 2017 Structural Dyn. 4 044012
[50] Campbell G H, LaGrange T, Kim J S, Reed B W and Browning N D 2010 J. Electron. Microscopy 59 Suppl 1 S67
[51] Cremons D R, Du D X and Flannigan D J 2017 Phys. Rev. Mater. 1 073801
[52] Cremons D R, Plemmons D A and Flannigan D J 2016 Nat. Commun. 7 11230
[53] Flannigan D J and Zewail A H 2010 Nano Lett. 10 1892
[54] Kwon O H, Park H S, Baskin J S and Zewail A H 2010 Nano Lett. 10 3190
[55] McKenna A J, Eliason J K and Flannigan D J 2017 Nano Lett. 17 3952
[56] Park H S, Baskin J S, Barwick B, Kwon O H and Zewail A H 2009 Ultramicroscopy 110 7
[57] Park H S, Baskin J S and Zewail A H 2010 Nano Lett. 10 3796
[58] Schliep K B, Quarterman P, Wang J P and Flannigan D J 2017 Appl. Phys. Lett. 110 222404
[59] Zhang M, Cao G, Tian H, Sun S, Li Z, Li X, Guo C, Li Z, Yang H and Li J 2017 Phys. Rev. B 96 174203
[60] McVitie S and Cushley M 2006 Ultramicroscopy 106 423
[61] Yu X Z, Onose Y, Kanazawa N, Park J H, Han J H, Matsui Y, Nagaosa N and Tokura Y 2010 Nature 465 901
[62] Loudon J C, Yazdi S, Kasama T, Zhigadlo N D and Karpinski J 2015 Phys. Rev. B 91 054505
[63] Mukai M, Okunishi E, Ashino M, Omoto K, Fukuda T, Ikeda A, Somehara K, Kaneyama T, Saitoh T, Hirayama T and Ikuhara Y 2015 Microscopy-Jpn. 64 151
[64] Carbone F, Kwon O H and Zewail A H 2009 Science 325 181
[65] Vanacore G M, van der Veen R M and Zewail A H 2015 ACS Nano 9 1721
[66] van der Veen R M, Penfold T J and Zewail A H 2015 Structural Dyn. 2 024302
[67] Ortalan V and Zewail A H 2011 J. Am. Chem. Soc. 133 10732
[68] Su Z, Baskin J S, Zhou W, Thomas J M and Zewail A H 2017 J. Am. Chem. Soc. 139 4916
[69] Asenjo-Garcia A and García de Abajo F J 2013 New J. Phys. 15 103021
[70] Yurtsever A, Baskin J S and Zewail A H 2012 Nano Lett. 12 5027
[71] Yurtsever A and Zewail A H 2012 Nano Lett. 12 3334
[72] Ryabov A and Baum P 2016 Science 353 374
[73] Park S T, Yurtsever A, Baskin J S and Zewail A H 2013 Proc. Natl. Academy Sci. United States Am. 110 9277
[74] Lummen T T, Lamb R J, Berruto G, LaGrange T, Dal Negro L, Garcia de Abajo F J, McGrouther D, Barwick B and Carbone F 2016 Nat. Commun. 7 13156
[75] Barwick B and Zewail A H 2015 ACS Photon. 2 1391
[76] Feist A, Echternkamp K E, Schauss J, Yalunin S V, Schafer S and Ropers C 2015 Nature 521 200
[77] Piazza L, Lummen T T, Quinonez E, Murooka Y, Reed B W, Barwick B and Carbone F 2015 Nat. Commun. 6 6407
[78] Storeck G, Vogelgesang S, Sivis M, Schafer S and Ropers C 2017 Structural Dyn. 4 044024
[79] Feist A, Bach N, Rubiano da Silva N, Danz T, Moller M, Priebe K E, Domrose T, Gatzmann J G, Rost S, Schauss J, Strauch S, Bormann R, Sivis M, Schafer S and Ropers C 2017 Ultramicroscopy 176 63
[80] Caruso G M, Houdellier F, Abeilhou P and Arbouet A 2017 Appl. Phys. Lett. 111 023101
[81] Yang J, Yoshida Y and Shibata H 2015 Electron. Commun. Jpn. 98 50
[82] Priebe K E, Rathje C, Yalunin S V, Hohage T, Feist A, Schaer S and Ropers C 2017 Nat. Photon. 11 793
[83] Morimoto Y and Baum P 2018 Nat. Phys. 14 252
[1] How to realize an ultrafast electron diffraction experiment with a terahertz pump: A theoretical study
Dan Wang(王丹), Xuan Wang(王瑄), Guoqian Liao(廖国前), Zhe Zhang(张喆), and Yutong Li(李玉同). Chin. Phys. B, 2022, 31(5): 056103.
[2] Design of an ultrafast electron diffractometer with multiple operation modes
Chun-Long Hu(胡春龙), Zhong Wang(王众), Yi-Jie Shi(石义杰), Chang Ye(叶昶), and Wen-Xi Liang(梁文锡). Chin. Phys. B, 2021, 30(9): 090701.
[3] Design of a novel correlative reflection electron microscope for in-situ real-time chemical analysis
Tian-Long Li(李天龙), Zheng Wei(魏征), and Wei-Shi Wan(万唯实). Chin. Phys. B, 2021, 30(12): 120702.
[4] Uncovering the internal structure of five-fold twinned nanowires through 3D electron diffraction mapping
Xin Fu(付新). Chin. Phys. B, 2020, 29(6): 068101.
[5] Epitaxial fabrication of two-dimensional TiTe2 monolayer on Au(111) substrate with Te as buffer layer
Zhipeng Song(宋志朋), Bao Lei(雷宝), Yun Cao(曹云), Jing Qi(戚竞), Hao Peng(彭浩), Qin Wang(汪琴), Li Huang(黄立), Hongliang Lu(路红亮), Xiao Lin(林晓), Ye-Liang Wang(王业亮), Shixuan Du(杜世萱), Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2019, 28(5): 056801.
[6] Ultrafast electron diffraction
Xuan Wang(王瑄), Yutong Li(李玉同). Chin. Phys. B, 2018, 27(7): 076102.
[7] Improved method for studying the propagation dynamics of ultrafast electron pulses based on mean-field models
Meng-Chao Li(李梦超), Xuan Wang(王瑄), Guo-Qian Liao(廖国前), Yu-Tong Li(李玉同), Jie Zhang(张杰). Chin. Phys. B, 2017, 26(5): 054103.
[8] Compressing ultrafast electron pulse by radio frequency cavity
Min-Jie Pei(裴敏洁), Da-Long Qi(齐大龙), Ying-Peng Qi(齐迎朋), Tian-Qing Jia(贾天卿), Shi-An Zhang(张诗按), Zhen-Rong Sun(孙真荣). Chin. Phys. B, 2017, 26(4): 044102.
[9] Cubic ZnO films obtained at low pressure by molecular beam epitaxy
Wang Xiao-Dan (王小丹), Zhou Hua (周华), Wang Hui-Qiong (王惠琼), Ren Fei (任飞), Chen Xiao-Hang (陈晓航), Zhan Hua-Han (詹华瀚), Zhou Ying-Hui (周颖慧), Kang Jun-Yong (康俊勇). Chin. Phys. B, 2015, 24(9): 097106.
[10] Radio-frequency compressed electron pulse-width characterization by cross-correlation between electron bunches and laser-induced plasma
Li Jing (李静), Pei Min-Jie (裴敏洁), Qi Da-Long (齐大龙), Qi Ying-Peng (齐迎朋), Yang Yan (杨岩), Sun Zhen-Rong (孙真荣). Chin. Phys. B, 2014, 23(12): 124209.
[11] Charge ordering modulations in Bi0.4Ca0.6MnO3 film with a thickness of 110 nm
Ding Yan-Hua (丁艳华), Wang Yi-Qian (王乙潜), Cai Rong-Sheng (蔡鎔声), Chen Yun-Zhong (陈允忠), Sun Ji-Rong (孙继荣 ). Chin. Phys. B, 2012, 21(8): 087502.
[12] Surface segregation of InGaAs films by the evolution of reflection high-energy electron diffraction patterns
Zhou Xun(周勋), Luo Zi-Jiang(罗子江), Guo Xiang(郭祥), Zhang Bi-Chan(张毕禅), Shang Lin-Tao(尚林涛), Zhou Qing(周清), Deng Chao-Yong(邓朝勇), and Ding Zhao(丁召) . Chin. Phys. B, 2012, 21(4): 046103.
[13] Effect of thickness on the microstructure of GaN films on Al2O3 (0001) by laser molecular beam epitaxy
Liu Ying-Ying(刘莹莹), Zhu Jun(朱俊), Luo Wen-Bo(罗文博), Hao Lan-Zhong(郝兰众), Zhang Ying(张鹰), and Li Yan-Rong(李言荣) . Chin. Phys. B, 2011, 20(10): 108102.
[14] Adsorption geometry of glycine on Cu(001) determined with low-energy electron diffraction and scanning tunnelling microscopy
Ge Si-Ping (葛四平), Zhao Xue-Ying (赵学应), Gai Zheng (盖峥), Zhao Ru-Guang (赵汝光), Yang Wei-Sheng (杨威生). Chin. Phys. B, 2002, 11(8): 839-845.
[15] Study of the influence of higher-order Laue zones on the exit wavefunction
Liu Qiu-Xiang (刘秋香), Yang Qi-Bin (杨奇斌), Wang Yuan-Ming (王元明). Chin. Phys. B, 2002, 11(6): 587-591.
No Suggested Reading articles found!