Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(2): 027701    DOI: 10.1088/1674-1056/27/2/027701
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

First-principles study of polarization and piezoelectricity behavior in tetragonal PbTiO3-based superlattices

Zhenye Zhu(朱振业)
School of Materials Science and Engineering, Harbin Institute of Technology Shenzhen Graduate School, Shenzhen 518055, China
Abstract  

Using first-principles calculation, the contribution of A-site and B-site atoms to polarization and piezoelectricity d33 in the tetragonal PbTiO3/KNbO3 and PbTiO3/LaAlO3 superlattices is investigated in this paper. It is shown that PbTiO3/KNbO3 superlattice has larger polarization and d33 than PbTiO3/LaAlO3 superlattice, because there is stronger charge transfer between A(B)-site atoms and oxygen atom in PbTiO3/KNbO3 superlattice. In PbTiO3/KNbO3 superlattice, B-site atoms (Ti, Nb) make larger contribution to the total polarization and d33 than the A-site atoms (Pb, K) because of the strong covalent interactions between the transition metal (Ti, Nb) and the oxygen atoms, while piezoelectricity in PbTiO3/LaAlO3 superlattice mainly ascribes to piezoelectric contribution of Pb atom and Ti atom in PbTiO3 component. Furthermore, by calculating the proportion of the piezoelectric contribution from PbTiO3 component in superlattices, we find there is different response of strain to piezoelectric contribution from PbTiO3 component in two superlattices but still with a value larger than 50%. In PbTiO3/KNbO3 superlattice, the c-axis strain reduces the proportion, especially under tensile condition. Meanwhile in PbTiO3/LaAlO3 superlattice, PbTiO3 plays a leading role to the total d33, especially under compressive condition, and the proportion decreases as the tensile strain increases.

Keywords:  perovskite superlattice      first-principles      strain      cation      piezoelectricity  
Received:  14 August 2017      Revised:  24 November 2017      Accepted manuscript online: 
PACS:  77.55.Px (Epitaxial and superlattice films)  
  77.65.Ly (Strain-induced piezoelectric fields)  
  77.84.Lf (Composite materials)  
  78.20.Bh (Theory, models, and numerical simulation)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant No. 11372085) and the Shenzhen Science and Technology Project (Grant No. JCYJ20150625142543461).

Corresponding Authors:  Zhenye Zhu     E-mail:  zhuzy@hit.edu.cn
About author:  77.55.Px; 77.65.Ly; 77.84.Lf; 78.20.Bh

Cite this article: 

Zhenye Zhu(朱振业) First-principles study of polarization and piezoelectricity behavior in tetragonal PbTiO3-based superlattices 2018 Chin. Phys. B 27 027701

[1] Ortega N, Kumar A, Scott J F, Douglas B Chrisey, Tomazawa M, Shalini Kumari, Diestra D G B and Katiyarc R S 2012 J. Phys.:Condens. Matter 24 445901
[2] Xie Z K, Yue Z X, Griffin Ruehl, Peng B, Zhang J, Yu Q, Zhang X H and Li L T 2014 Appl. Phys. Lett. 104 243902
[3] Rattikorn Yimnirun, Yongyut Laosiritaworn, Supattra Wongsaenmai, Yimnirun R, Laosiritaworn Y and Wongsaenmai S 2006 J. Phys. D:Appl. Phys. 39 759
[4] Bellaiche L, García A and Vanderbilt D 2000 Phys. Rev. Lett. 84 5427
[5] Yohachi, Yamashita, Yamamoto N, Itsumi K and Hosono Y 2011 Jpn. J. Appl. Phys. 50 09NC05
[6] Lin D B, Zhang S J, Li Z R, Li F, Xu Z, Satoshi Wada, Luo J and Thomas R Shrout 2011 J. Appl. Phys. 110 084110
[7] Bousquet E, Dawber M, Stucki N, Lichtensteiger C, Hermet P, Gariglio S, Triscone J M and Ghosez P 2008 Nature 452 732
[8] Claudia Bungaro and Rabe K M 2004 Phys. Rev. B 69 184104
[9] Zhu Z Y, Wang S Q and Fu Y M 2016 Chin. Phys. Lett. 33 026302
[10] Li J F, Wang K, Zhang B P and Zhang L M 2006 J. Am. Ceram. Soc. 89 706
[11] Zhang B P, Li J F, Wang K and Zhang H L 2006 J. Am. Ceram. Soc. 89 1605
[12] Luo X and Wang B 2008 J. Appl. Phys. 104 073518
[13] Chen Y F, Yu T, Chen J X, Shun L, Li P and Ming N B 1995 Appl. Phys. Lett. 66 148
[14] Attfield J P 2002 Cry. Eng. 5 427
[15] King G and Woodward P M 2010 J. Mater. Chem. 20 5758
[16] Hohenberg P and Kohn W 1964 Phys. Rev. B 136 B864
[17] Kohn W and Sham L J 1965 Phys. Rev. A 140 A1133
[18] Blöchl P E 1990 Phys. Rev. B 50 17953
[19] Kresse G and Hafner J 1993 Phys. Rev. B 47 558
[20] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
[21] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
[22] Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188
[23] Vanderbilt D and King-Smith R D 1993 Phys. Rev. B 48 4442
[24] Shi J, Ilya Grinberg, Wang X L and Andrew M Rappe 2014 Phys. Rev. B 89 094105
[25] Duan Y F, Shi H L and Qin L X 2008 J. Phys.:Condens. Matter 20 175210
[26] Wan L F, Nishimatsu T and Beckman S P 2012 J. Appl. Phys. 111 104107
[27] Pentcheva R and Pickett W E 2009 Phys. Rev. Lett. 102 107602
[28] Xavier Gonze and Changyol Lee 1997 Phys. Rev. B 55 10355
[29] Zhu Z Y, Wang B, Wang H, Zheng Y and Li Q K 2007 Chin. Phys. B 16 1780
[30] Zhu Z Y, Wang B, Zheng Y, Wang H, Li Q K and Li C L 2007 Acta Phys. Sin. 56 5986(in Chinese)
[31] Piskunov S, Heifets E, Eglitis R I and Borstel G 2004 Comput. Mater. Sci. 29 165
[32] Okoye C M I 2003 J. Phys.:Condens. Matter 15 5945
[1] Effects of phonon bandgap on phonon-phonon scattering in ultrahigh thermal conductivity θ-phase TaN
Chao Wu(吴超), Chenhan Liu(刘晨晗). Chin. Phys. B, 2023, 32(4): 046502.
[2] First-principles study of the bandgap renormalization and optical property of β-LiGaO2
Dangqi Fang(方党旗). Chin. Phys. B, 2023, 32(4): 047101.
[3] Conductive path and local oxygen-vacancy dynamics: Case study of crosshatched oxides
Z W Liang(梁正伟), P Wu(吴平), L C Wang(王利晨), B G Shen(沈保根), and Zhi-Hong Wang(王志宏). Chin. Phys. B, 2023, 32(4): 047303.
[4] Strain compensated type II superlattices grown by molecular beam epitaxy
Chao Ning(宁超), Tian Yu(于天), Rui-Xuan Sun(孙瑞轩), Shu-Man Liu(刘舒曼), Xiao-Ling Ye(叶小玲), Ning Zhuo(卓宁), Li-Jun Wang(王利军), Jun-Qi Liu(刘俊岐), Jin-Chuan Zhang(张锦川), Shen-Qiang Zhai(翟慎强), and Feng-Qi Liu(刘峰奇). Chin. Phys. B, 2023, 32(4): 046802.
[5] Hopf bifurcation and phase synchronization in memristor-coupled Hindmarsh-Rose and FitzHugh-Nagumo neurons with two time delays
Zhan-Hong Guo(郭展宏), Zhi-Jun Li(李志军), Meng-Jiao Wang(王梦蛟), and Ming-Lin Ma(马铭磷). Chin. Phys. B, 2023, 32(3): 038701.
[6] Prediction of one-dimensional CrN nanostructure as a promising ferromagnetic half-metal
Wenyu Xiang(相文雨), Yaping Wang(王亚萍), Weixiao Ji(纪维霄), Wenjie Hou(侯文杰),Shengshi Li(李胜世), and Peiji Wang(王培吉). Chin. Phys. B, 2023, 32(3): 037103.
[7] Strain engineering and hydrogen effect for two-dimensional ferroelectricity in monolayer group-IV monochalcogenides MX (M =Sn, Ge; X=Se, Te, S)
Maurice Franck Kenmogne Ndjoko, Bi-Dan Guo(郭必诞), Yin-Hui Peng(彭银辉), and Yu-Jun Zhao(赵宇军). Chin. Phys. B, 2023, 32(3): 036802.
[8] Rational design of Fe/Co-based diatomic catalysts for Li-S batteries by first-principles calculations
Xiaoya Zhang(张晓雅), Yingjie Cheng(程莹洁), Chunyu Zhao(赵春宇), Jingwan Gao(高敬莞), Dongxiao Kan(阚东晓), Yizhan Wang(王义展), Duo Qi(齐舵), and Yingjin Wei(魏英进). Chin. Phys. B, 2023, 32(3): 036803.
[9] Single-layer intrinsic 2H-phase LuX2 (X = Cl, Br, I) with large valley polarization and anomalous valley Hall effect
Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), Yuan-Shuo Liu(刘元硕), Shuai Fu(傅帅),Xiao-Ning Cui(崔晓宁), Yi-Hao Wang(王易昊), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(3): 037306.
[10] Li2NiSe2: A new-type intrinsic two-dimensional ferromagnetic semiconductor above 200 K
Li-Man Xiao(肖丽蔓), Huan-Cheng Yang(杨焕成), and Zhong-Yi Lu(卢仲毅). Chin. Phys. B, 2023, 32(3): 037501.
[11] First-principles prediction of quantum anomalous Hall effect in two-dimensional Co2Te lattice
Yuan-Shuo Liu(刘元硕), Hao Sun(孙浩), Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(2): 027101.
[12] Bismuth doping enhanced tunability of strain-controlled magnetic anisotropy in epitaxial Y3Fe5O12(111) films
Yunpeng Jia(贾云鹏), Zhengguo Liang(梁正国), Haolin Pan(潘昊霖), Qing Wang(王庆), Qiming Lv(吕崎鸣), Yifei Yan(严轶非), Feng Jin(金锋), Dazhi Hou(侯达之), Lingfei Wang(王凌飞), and Wenbin Wu(吴文彬). Chin. Phys. B, 2023, 32(2): 027501.
[13] Current bifurcation, reversals and multiple mobility transitions of dipole in alternating electric fields
Wei Du(杜威), Kao Jia(贾考), Zhi-Long Shi(施志龙), and Lin-Ru Nie(聂林如). Chin. Phys. B, 2023, 32(2): 020505.
[14] Molecular dynamics study of interactions between edge dislocation and irradiation-induced defects in Fe–10Ni–20Cr alloy
Tao-Wen Xiong(熊涛文), Xiao-Ping Chen(陈小平), Ye-Ping Lin(林也平), Xin-Fu He(贺新福), Wen Yang(杨文), Wang-Yu Hu(胡望宇), Fei Gao(高飞), and Hui-Qiu Deng(邓辉球). Chin. Phys. B, 2023, 32(2): 020206.
[15] Novel traveling quantum anonymous voting scheme via GHZ states
Wenhao Zhao(赵文浩) and Min Jiang(姜敏). Chin. Phys. B, 2023, 32(2): 020303.
No Suggested Reading articles found!