Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(2): 028801    DOI: 10.1088/1674-1056/26/2/028801
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Highly conductive and transparent carbon nanotube-based electrodes for ultrathin and stretchable organic solar cells

Qingxia Fan(范庆霞)1,3, Qiang Zhang(张强)1,3, Wenbin Zhou(周文斌)1, Feng Yang(杨丰)1,3, Nan Zhang(张楠)1, Shiqi Xiao(肖仕奇)1,3, Xiaogang Gu(谷孝刚)1,3, Zhuojian Xiao(肖卓建)1,3, Huiliang Chen(陈辉亮)1,3, Yanchun Wang(王艳春)1,2,3, Huaping Liu(刘华平)1,2,3, Weiya Zhou(周维亚)1,2,3
1 Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
2 Beijing Key Laboratory for Advanced Functional Materials and Structure Research, Beijing 100190, China;
3 University of Chinese Academy of Sciences, Beijing 100049, China
Abstract  

In this work, we have presented a freestanding and flexible CNT-based film with sheet resistance of 60 Ω/□ and transmittance of 82% treated by nitric acid and chloroauric acid in sequence. Based on modified CNT film as a transparent electrode, we have demonstrated an ultrathin, flexible organic solar cell (OSC) fabricated on 2.5-μm PET substrate. The efficiency of OSC, combined with a composite film of poly (3-hexylthiophene) (P3HT) and phenyl-C61 butyric acid methyl ester (PCBM) as an active layer and with a thin layer of methanol soluble biuret inserted between the photoactive layer and the cathode, can be up to 2.74% which is approximate to that of the reference solar cell fabricated with ITO-coated glass (2.93%). Incorporating the as-fabricated ITO-free OSC with pre-stretched elastomer, 50% compressive deformation can apply to the solar cells. The results show that the as-prepared CNT-based hybrid film with outstanding electrical and optical properties could serve as a promising transparent electrode for low cost, flexible and stretchable OSCs, which will broaden the applications of OSC and generate more solar power than it now does.

Keywords:  carbon nanotube      transparent electrode      organic solar cells      stretchability  
Received:  07 November 2016      Revised:  15 November 2016      Accepted manuscript online: 
PACS:  88.30.rh (Carbon nanotubes)  
  81.05.U- (Carbon/carbon-based materials)  
  88.30.mj (Composite materials)  
  88.40.jr (Organic photovoltaics)  
Fund: 

Project supported by the National Basic Research Program of China (Grant No. 2012CB932302), the National Natural Science Foundation of China (Grant Nos. 11634014, 51172271, 51372269, and 51472264), and the "Strategic Priority Research Program" of the Chinese Academy of Sciences (Grant No. XDA09040202).

Corresponding Authors:  Weiya Zhou     E-mail:  wyzhou@iphy.ac.cn

Cite this article: 

Qingxia Fan(范庆霞), Qiang Zhang(张强), Wenbin Zhou(周文斌), Feng Yang(杨丰), Nan Zhang(张楠), Shiqi Xiao(肖仕奇), Xiaogang Gu(谷孝刚), Zhuojian Xiao(肖卓建), Huiliang Chen(陈辉亮), Yanchun Wang(王艳春), Huaping Liu(刘华平), Weiya Zhou(周维亚) Highly conductive and transparent carbon nanotube-based electrodes for ultrathin and stretchable organic solar cells 2017 Chin. Phys. B 26 028801

[1] Lipomi D J, Tee B C K, Vosgueritchian M and Bao Z N 2011 Adv. Mater. 23 1771
[2] Kaltenbrunner M, White M S, Glowacki E D, Sekitani T, Someya T, Sariciftci N S and Bauer S 2012 Nat. Commun. 3 770
[3] Lipomi D J and Bao Z 2011 Energy Environ. Sci. 4 3314
[4] Yang S B, Kong B S, Jung D H, Baek Y K, Han C S, Oh S K and Jung H T 2011 Nanoscale 3 1361
[5] Rowell M W, Topinka M A, McGehee M D, Prall H J, Dennler G, Sariciftci N S, Hu L B and Gruner G 2006 Appl. Phys. Lett. 88 233506
[6] Kim S, Yim J, Wang X, Bradley D D C, Lee S and Demello J C 2010 Adv. Funct. Mater. 20 2310
[7] Cho D Y, Eun K, Choa S H and Kim H K 2014 Carbon 66 530
[8] Ostfeld A E, Catheline A, Ligsay K, Kim K C, Chen Z H, Facchetti A, Fogden S and Arias A C 2014 Appl. Phys. Lett. 105 253301
[9] Zakhidov A A, Ulbricht R, Lee S B, Xiaomei J, Inoue K, Mei Z, Shaoli F and Baughman R H 2007 Sol. Energy Mater. Sol. Cells 91 416
[10] Tenent R C, Barnes T M, Bergeson J D, Ferguson A J, To B, Gedvilas L M, Heben M J and Blackburn J L 2009 Adv. Mater. 21 3210
[11] Geng H Z, Kim K K, So K P, Lee Y S, Chang Y and Lee Y H 2007 J. Am. Chem. Soc. 129 7758
[12] Tantang H, Ong J Y, Loh C L, Dong X C, Chen P, Chen Y, Hu X, Tan L P and Li L J 2009 Carbon 47 1867
[13] Shim D, Jung S H, Han S Y, Shin K, Lee K H and Han J H 2011 Chem. Commun. 47 5202
[14] Yang S B, Kong B S and Jung H T 2012 J. Phys. Chem. C 116 25581
[15] Lee R S, Kim H J, Fischer J E, Thess A and Smalley R E 1997 Nature 388 255
[16] Wei B Q, Spolenak R, Kohler-Redlich P, Ruhle M and Arzt E 1999 Appl. Phys. Lett. 74 3149
[17] Kim K K, Yoon S M, Park H K, Shin H J, Kim S M, Bae J J, Cui Y, Kim J M, Choi J Y and Lee Y H 2010 New J. Chem. 34 2183
[18] Ma W, Song L, Yang R, Zhang T, Zhao Y, Sun L, Ren Y, Liu D, Liu L, Shen J, Zhang Z, Xiang Y, Zhou W and Xie S 2007 Nano Lett. 7 2307
[19] Kim K K, Bae J J, Park H K, Kim S M, Geng H Z, Park K A, Shin H J, Yoon S-M, Benayad A, Choi J Y and Lee Y H 2008 J. Am. Chem. Soc. 130 12757
[20] Barnes T M, Reese M O, Bergeson J D, Larsen B A, Blackburn J L, Beard M C, Bult J and van de Lagemaat J 2012 Adv. Energy Mater. 2 353
[21] Barnes T M, Bergeson J D, Tenent R C, Larsen B A, Teeter G, Jones K M, Blackburn J L and van de Lagemaat J 2010 Appl. Phys. Lett. 96 243309
[22] Li G, Yao Y, Yang H, Shrotriya V, Yang G and Yang Y 2007 Adv. Funct. Mater. 17 1636
[23] Salvatierra R V, Cava C E, Roman L S and Zarbin A J G 2013 Adv. Funct. Mater. 23 1490
[24] Seok-In N, Jae-Seon L, Yong-Jin N, Tae-Wook K, Seok-Soon K, Han-Ik J and Sungho L 2013 Sol. Energy Mater. Sol. Cells 115 1
[25] Kim S, Wang X, Yim J H, Tsoi W C, Kim J S, Lee S and de Mello J C 2012 J. Photon. Energy 2 021010
[26] Palilis L C, Vasilopoulou M, Douvas A M, Georgiadou D G, Kennou S, Stathopoulos N A, Constantoudis V and Argitis P 2013 Sol. Energy Mater. Sol. Cells 114 205
[27] Wang G, Jiu T, Sun C, Li J, Li P, Lu F and Fang J 2014 ACS Appl. Mater. Interfaces 6 833
[28] Lipomi D J, Vosgueritchian M, Tee B C K, Hellstrom S L, Lee J A, Fox C H and Bao Z N 2011 Nat. Nanotechnol. 6 788
[29] Taohong Wang C C, Kunping Guo, Guo Chen, Tao Xu, Bin Wei 2016 Chin. Phys. B 25 038402
[30] Jeon I, Cui K, Chiba T, Anisimov A, Nasibulin A G, Kauppinen E I, Maruyama S and Matsuo Y 2015 J. Am. Chem. Soc. 137 7982
[31] Choi E S, Jeon Y J, Kim S S, Kim T W, Noh Y J, Kwon S N and Na S I 2015 Appl. Phys. Lett. 107 023301
[32] Zhao X, Xu C, Wang H, Chen F, Zhang W, Zhao Z, Chen L and Yang S 2014 ACS Appl. Mater. Interfaces 6 4329
[33] Du Pasquier A, Miller S and Chhowalla M 2006 Sol. Energy Mater. Sol. Cells 90 1828
[34] Jung J W, Jo J W and Jo W H 2011 Adv. Mater. 23 1782
[35] Tait J G, Worfolk B J, Maloney S A, Hauger T C, Elias A L, Buriak J M and Harris K D 2013 Sol. Energy Mater. Sol. Cells 110 98
[36] He Z, Zhong C, Huang X, Wong W-Y, Wu H, Chen L, Su S and Cao Y 2011 Adv. Mater. 23 4636
[37] Tahk D, Lee H H and Khang D Y 2009 Macromolecules 42 7079
[38] Savagatrup S, Printz A D, Wu H S, Rajan K M, Sawyer E J, Zaretski A V, Bettinger C J and Lipomi D J 2015 Synth. Met. 203 208
[1] Abnormal magnetic behavior of prussian blue analogs modified with multi-walled carbon nanotubes
Jia-Jun Mo(莫家俊), Pu-Yue Xia(夏溥越), Ji-Yu Shen(沈纪宇), Hai-Wen Chen(陈海文), Ze-Yi Lu(陆泽一), Shi-Yu Xu(徐诗语), Qing-Hang Zhang(张庆航), Yan-Fang Xia(夏艳芳), Min Liu(刘敏). Chin. Phys. B, 2023, 32(4): 047503.
[2] Modeling of thermal conductivity for disordered carbon nanotube networks
Hao Yin(殷浩), Zhiguo Liu(刘治国), and Juekuan Yang(杨决宽). Chin. Phys. B, 2023, 32(4): 044401.
[3] Analytical determination of non-local parameter value to investigate the axial buckling of nanoshells affected by the passing nanofluids and their velocities considering various modified cylindrical shell theories
Soheil Oveissi, Aazam Ghassemi, Mehdi Salehi, S.Ali Eftekhari, and Saeed Ziaei-Rad. Chin. Phys. B, 2023, 32(4): 046201.
[4] SERS activity of carbon nanotubes modified by silver nanoparticles with different particle sizes
Xiao-Lei Zhang(张晓蕾), Jie Zhang(张洁), Yuan Luo(罗元), and Jia Ran(冉佳). Chin. Phys. B, 2022, 31(7): 077401.
[5] Effect of carbon nanotubes addition on thermoelectric properties of Ca3Co4O9 ceramics
Ya-Nan Li(李亚男), Ping Wu(吴平), Shi-Ping Zhang(张师平), Yi-Li Pei(裴艺丽), Jin-Guang Yang(杨金光), Sen Chen(陈森), and Li Wang(王立). Chin. Phys. B, 2022, 31(4): 047203.
[6] Effect of net carriers at the interconnection layer in tandem organic solar cells
Li-Jia Chen(陈丽佳), Guo-Xi Niu(牛国玺), Lian-Bin Niu(牛连斌), and Qun-Liang Song(宋群梁). Chin. Phys. B, 2022, 31(3): 038802.
[7] A review of arc-discharge method towards large-scale preparation of long linear carbon chains
Yi-Fan Zhang(张一帆). Chin. Phys. B, 2022, 31(12): 125201.
[8] Large-scale synthesis of polyynes with commercial laser marking technology
Liang Fang(房良), Yanping Xie(解燕平), Shujie Sun(孙书杰), and Wei Zi(訾威). Chin. Phys. B, 2022, 31(12): 126803.
[9] Low-voltage soft robots based on carbon nanotube/polymer electrothermal composites
Qi Wang(王琪), Ying-Qiong Yong(雍颖琼), and Zhi-Ming Bai(白智明). Chin. Phys. B, 2022, 31(12): 128801.
[10] Raman spectroscopy of isolated carbyne chains confined in carbon nanotubes: Progress and prospects
Johannes M. A. Lechner, Pablo Hernández López, and Sebastian Heeg. Chin. Phys. B, 2022, 31(12): 127801.
[11] Highly flexible and excellent performance continuous carbon nanotube fibrous thermoelectric modules for diversified applications
Xiao-Gang Xia(夏晓刚), Qiang Zhang(张强), Wen-Bin Zhou(周文斌), Zhuo-Jian Xiao(肖卓建), Wei Xi(席薇), Yan-Chun Wang(王艳春), and Wei-Ya Zhou(周维亚). Chin. Phys. B, 2021, 30(7): 078801.
[12] Instability of single-walled carbon nanotubes conveying Jeffrey fluid
Bei-Nan Jia(贾北楠) and Yong-Jun Jian(菅永军). Chin. Phys. B, 2021, 30(4): 044601.
[13] Enhancing light absorption for organic solar cells using front ITO nanograting and back ultrathin Al layer
Li Zhang(张力), Wei-Ning Liu(刘卫宁), Yan-Zhou Wang(王艳周), Qi-Ming Liu(刘奇明), Jun-Shuai Li(栗军帅), Ya-Li Li(李亚丽), and De-Yan He(贺德衍). Chin. Phys. B, 2021, 30(10): 104207.
[14] Carbon nanotube-based nanoelectromechanical resonatoras mass biosensor
Ahmed M. Elseddawy, Adel H. Phillips, Ahmed S Bayoumi. Chin. Phys. B, 2020, 29(7): 078501.
[15] Enhancement of corona discharge induced wind generation with carbon nanotube and titanium dioxide decoration
Jianchun Ye(叶建春), Jun Li(李俊), Xiaohong Chen(陈晓红), Sumei Huang(黄素梅), Wei Ou-Yang(欧阳威). Chin. Phys. B, 2019, 28(9): 095202.
No Suggested Reading articles found!