ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
Enhancing light absorption for organic solar cells using front ITO nanograting and back ultrathin Al layer |
Li Zhang(张力)1,2,†, Wei-Ning Liu(刘卫宁)1,2,†, Yan-Zhou Wang(王艳周)1,2, Qi-Ming Liu(刘奇明)1,2, Jun-Shuai Li(栗军帅)1,2,3,‡, Ya-Li Li(李亚丽)1,2,§, and De-Yan He(贺德衍)1,2,3 |
1 Key Laboratory of Special Function Materials&Structure Design of the Ministry of Education, Lanzhou University, Lanzhou 730000, China; 2 School of Physical Science&Technology, Lanzhou University, Lanzhou 730000, China; 3 School of Materials&Energy, Lanzhou University, Lanzhou 730000, China |
|
|
Abstract To address the discrepancy between carrier collection and light absorption of organic solar cells caused by the limited carrier mobility and optical absorption coefficient for the normally employed organic photoactive layers, a light management structure composed of a front indium tin oxide (ITO) nanograting and ultrathin Al layer inserted in between the photoactive layer and the electron transport layer (ETL) is introduced. Owing to the antireflection and light scattering induced by the ITO nanograting and the suppression of light absorption in the ETL by the inserted Al layer, the light absorption of the photoactive layer is significantly enhanced in a spectral range from 400 nm to 650 nm that also covers the main energy region of solar irradiation for the normally employed active materials such as the P3HT:PC61BM blend. The simulation results indicate that comparing with the control device with a planar configuration of ITO/PEDOT:PSS/P3HT:PC61BM (80-nm thick)/ZnO/Al, the short-circuit current density and power conversion efficiency of the optimized light management structure can be improved by 32.86% and 34.46%. Moreover, good omnidirectional light management is observed for the proposed device structure. Owing to the fact that the light management structure possesses the simple structure and excellent performance, the exploration of such a structure can be believed to be significant in fabricating the thin film-based optoelectronic devices.
|
Received: 26 January 2021
Revised: 17 February 2021
Accepted manuscript online: 24 February 2021
|
PACS:
|
42.79.Dj
|
(Gratings)
|
|
88.40.jr
|
(Organic photovoltaics)
|
|
Fund: Project supported by the Natural Science Foundation of Gansu Province, China (Grant No. 20JR10RA611) and the Fundamental Research Funds for Central Universities, China (Grant Nos. lzujbky-2017-178 and lzujbky-2017-181). |
Corresponding Authors:
Jun-Shuai Li, Ya-Li Li
E-mail: jshli@lzu.edu.cn
|
Cite this article:
Li Zhang(张力), Wei-Ning Liu(刘卫宁), Yan-Zhou Wang(王艳周), Qi-Ming Liu(刘奇明), Jun-Shuai Li(栗军帅), Ya-Li Li(李亚丽), and De-Yan He(贺德衍) Enhancing light absorption for organic solar cells using front ITO nanograting and back ultrathin Al layer 2021 Chin. Phys. B 30 104207
|
[1] An Q, Zhang F, Zhang J, Tang W, Deng Z and Hu B 2016 Energy Environ. Sci. 9 281 [2] Lu C, Yan P, Wang J, Liu A, Song D and Jiang C 2014 Chin. Phys. B 23 088803 [3] Xiao X, Yi N, Yao G, Lu J, Leng S, Hu M, Yuan Z and Zhou W 2020 ACS Appl. Mater. Interfaces 12 58082 [4] Li J, Yu H, Wong S M, Li X, Zhang G, Lo P G Q and Kwong D L 2009 Appl. Phys. Lett. 95 243113 [5] Ali B A, Moubah R, Boulezhar A and Lassri H 2020 Chin. Phys. B 29 098801 [6] Chen J T and Hsu C S 2011 Polym. Chem. 2 2707 [7] Wang Y, Shao P, Chen Q, Li Y, Li J and He D 2017 J. Phys. D: Appl. Phys. 50 175105 [8] Wu Z, Wang Y, Zhang Y, Zhang W, Liu Q, Liu Q, Chen Q, Li Y, Li J and He D 2019 Org. Electron. 73 7 [9] Shi W, Kan Z, Cheng C, Li W, Song H, Li M, Yu D, Du X, Liu W, Jin S and Cong S 2020 Chin. Phys. Lett. 37 108401 [10] Xiang C, Jin Y, Liu J, Xu B, Wang W, Wei X, Song G and Xu Y 2014 Chin. Phys. B 23 038803 [11] Cui Y, Yao H, Zhang J, Xian K, Zhang T, Hong L, Wang Y, Xu Y, Ma K, An, C, He C, Wei Z, Gao F and Hou J 2020 Adv. Mater. 32 1908205 [12] Huang H, Tian G, Zhou L, Yuan J, Fahrner W R, Zhang W, Li X, Chen W and Liu R 2018 Chin. Phys. B 27 038502 [13] In S, Mason D R, Lee H, Jung M, Lee C and Park N 2015 ACS Photon. 2 78 [14] Wang Y, Zhang Y, Zhang L, Wu Z, Su Q, Liu Q, Fu Y, Li J, Li Y and He D 2020 Mater. Chem. Phys. 254 123536 [15] Lehr J, Mertens A, Liu Q, Martorell J, Paetzold U W and Lemmer U 2020 Opt. Express 28 37986 [16] Chen Y, Li L, Liu Z, Zhou N, Chen Q and Zhou H 2017 Nano Energy 40 540 [17] Li Y, Gao P, Chen Q, Yang J, Li J and He D 2016 J. Phys. D: Appl. Phys. 49 215104 [18] Fang H, Li X, Song S, Xu Y and Zhu J 2008 Nanotechnology 19 255703 [19] Song Y, Zhang Y, Song J, Li K, Zhang Z, Xu Y, Song G and Chen L 2015 Chin. Phys. Lett. 32 074206 [20] Li J, Yu H, Wong S M, Zhang G, Sun X, Lo P G Q and Kwong D L 2009 Appl. Phys. Lett. 95 033102 [21] Li H, Hu Y, Wang Y and Zhu F 2020 Sol. Energy Mater. Sol. Cells 211 110529 [22] Chen X, Wang J, Shao P, Liu Q, Liu D, Chen Q, Li Y, Li J and He D 2018 Nanoscale Res. Lett. 13 236 [23] Li J, Hu H and Li Y 2012 Nanotechnology 23 194010 [24] Li J, Yu H and Li Y, Wang F, Yang M and Wong S M 2011 Appl. Phys. Lett. 98 021905 [25] Calvo M and H.M 2015 J. Phys. Chem. C 119 18635 [26] Park Y, Vandewal K and Leo K 2018 Small Methods 2 1800123 [27] Jiang Z, Hu D, Pang L, Gao F and Wang P 2018 Chin. Phys. B 27 054201 [28] Cai B, Li X, Zhang Y and Jia B 2016 Nanotechnology 27 195401 [29] Gao P, Wang H, Sun Z, Han W, Li J and Ye J 2013 Appl. Phys. Lett. 103 253105 [30] Lim E L, Yap C C, Teridi M A M, Teh C H, Yusoff A R M and Jumali M H H 2016 Org. Electron. 36 12 [31] Wang R, Gong Q and Chen J 2020 Chin. Phys. B 29 064215 [32] Qu D, Liu F, Huang Y, Xie W and Xu Q 2011 Opt. Express 19 24795 [33] Yang J, Zhang P, Wang J and Wei S H 2020 Chin. Phys. B 29 108401 [34] Li Y, Wang J, Zhang W, Liu Q, Chen Q and Li J 2019 J. Phys. D: Appl. Phys. 52 435501 [35] Shen P, Wang G, Kang B, Guo W, and Shen L 2018 ACS Appl. Mater. Interfaces 10 6513 [36] Shin D H, Jang C W, Ko J S, and Choi S H 2021 Appl. Surf. Sci. 538 148155 [37] Sandhu S, Yu Z and Fan S 2015 J. Phys. D: Appl. Phys. 48 413001 [38] Li L, Shi C, Deng X, Wang Y, Xiao G, Ni L 2018 Chin. Phys. B 27 018804 [39] Zhang Y, Cui Y, Wang W, Fung K H, Ji T, Hao Y and Zhu F 2015 Plasmonics 10 773 [40] Kumar K, Kumamat U K, Mital R, and Dhawaw A 2019 J. Opt. Soc. Am. B 36 978 [41] Wu Z, Zhang W, Xie C, Zhang L, Wang Y, Zhang Y, Liu Q, Fu Y, Li Y, Li J and He D 2020 IEEE J. Photovolt. 10 1353 [42] Shao P, Chen X, Guo X, Zhang W, Chang F, Liu Q, Chen Q, Li J, Li Y and He D 2017 Org. Electron. 50 77 [43] Hegedus S S, and Shafarman W N 2004 Prog. Photovolt: Res. Appl. 12 155 [44] Huang S, Tang Y, Dang Y, Xu X, Dong Q, Kang B and Silva P P S R 2018 ACS Sustain. Chem. Eng. 6 6702 [45] Trana V H, Eomc S H, Yoonc S C, Kimb S K and Leeb S H 2019 Org. Electron. 68 85 [46] Kniepert J, Lange I, Heidbrink J, Kurpiers J, Brenner T J K, Koster L J A and Neher D 2015 J. Phys. Chem. C 119 8310 [47] Zheng Y, Wang G, Huang D, Kong J, Goh T, Huang W, Yu J S and Taylor A D 2018 Sol. RRL 2 1700144 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|