INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Prev
Next
|
|
|
Highly conductive and transparent carbon nanotube-based electrodes for ultrathin and stretchable organic solar cells |
Qingxia Fan(范庆霞)1,3, Qiang Zhang(张强)1,3, Wenbin Zhou(周文斌)1, Feng Yang(杨丰)1,3, Nan Zhang(张楠)1, Shiqi Xiao(肖仕奇)1,3, Xiaogang Gu(谷孝刚)1,3, Zhuojian Xiao(肖卓建)1,3, Huiliang Chen(陈辉亮)1,3, Yanchun Wang(王艳春)1,2,3, Huaping Liu(刘华平)1,2,3, Weiya Zhou(周维亚)1,2,3 |
1 Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
2 Beijing Key Laboratory for Advanced Functional Materials and Structure Research, Beijing 100190, China;
3 University of Chinese Academy of Sciences, Beijing 100049, China |
|
|
Abstract In this work, we have presented a freestanding and flexible CNT-based film with sheet resistance of 60 Ω/□ and transmittance of 82% treated by nitric acid and chloroauric acid in sequence. Based on modified CNT film as a transparent electrode, we have demonstrated an ultrathin, flexible organic solar cell (OSC) fabricated on 2.5-μm PET substrate. The efficiency of OSC, combined with a composite film of poly (3-hexylthiophene) (P3HT) and phenyl-C61 butyric acid methyl ester (PCBM) as an active layer and with a thin layer of methanol soluble biuret inserted between the photoactive layer and the cathode, can be up to 2.74% which is approximate to that of the reference solar cell fabricated with ITO-coated glass (2.93%). Incorporating the as-fabricated ITO-free OSC with pre-stretched elastomer, 50% compressive deformation can apply to the solar cells. The results show that the as-prepared CNT-based hybrid film with outstanding electrical and optical properties could serve as a promising transparent electrode for low cost, flexible and stretchable OSCs, which will broaden the applications of OSC and generate more solar power than it now does.
|
Received: 07 November 2016
Revised: 15 November 2016
Accepted manuscript online:
|
PACS:
|
88.30.rh
|
(Carbon nanotubes)
|
|
81.05.U-
|
(Carbon/carbon-based materials)
|
|
88.30.mj
|
(Composite materials)
|
|
88.40.jr
|
(Organic photovoltaics)
|
|
Fund: Project supported by the National Basic Research Program of China (Grant No. 2012CB932302), the National Natural Science Foundation of China (Grant Nos. 11634014, 51172271, 51372269, and 51472264), and the "Strategic Priority Research Program" of the Chinese Academy of Sciences (Grant No. XDA09040202). |
Corresponding Authors:
Weiya Zhou
E-mail: wyzhou@iphy.ac.cn
|
Cite this article:
Qingxia Fan(范庆霞), Qiang Zhang(张强), Wenbin Zhou(周文斌), Feng Yang(杨丰), Nan Zhang(张楠), Shiqi Xiao(肖仕奇), Xiaogang Gu(谷孝刚), Zhuojian Xiao(肖卓建), Huiliang Chen(陈辉亮), Yanchun Wang(王艳春), Huaping Liu(刘华平), Weiya Zhou(周维亚) Highly conductive and transparent carbon nanotube-based electrodes for ultrathin and stretchable organic solar cells 2017 Chin. Phys. B 26 028801
|
[1] |
Lipomi D J, Tee B C K, Vosgueritchian M and Bao Z N 2011 Adv. Mater. 23 1771
|
[2] |
Kaltenbrunner M, White M S, Glowacki E D, Sekitani T, Someya T, Sariciftci N S and Bauer S 2012 Nat. Commun. 3 770
|
[3] |
Lipomi D J and Bao Z 2011 Energy Environ. Sci. 4 3314
|
[4] |
Yang S B, Kong B S, Jung D H, Baek Y K, Han C S, Oh S K and Jung H T 2011 Nanoscale 3 1361
|
[5] |
Rowell M W, Topinka M A, McGehee M D, Prall H J, Dennler G, Sariciftci N S, Hu L B and Gruner G 2006 Appl. Phys. Lett. 88 233506
|
[6] |
Kim S, Yim J, Wang X, Bradley D D C, Lee S and Demello J C 2010 Adv. Funct. Mater. 20 2310
|
[7] |
Cho D Y, Eun K, Choa S H and Kim H K 2014 Carbon 66 530
|
[8] |
Ostfeld A E, Catheline A, Ligsay K, Kim K C, Chen Z H, Facchetti A, Fogden S and Arias A C 2014 Appl. Phys. Lett. 105 253301
|
[9] |
Zakhidov A A, Ulbricht R, Lee S B, Xiaomei J, Inoue K, Mei Z, Shaoli F and Baughman R H 2007 Sol. Energy Mater. Sol. Cells 91 416
|
[10] |
Tenent R C, Barnes T M, Bergeson J D, Ferguson A J, To B, Gedvilas L M, Heben M J and Blackburn J L 2009 Adv. Mater. 21 3210
|
[11] |
Geng H Z, Kim K K, So K P, Lee Y S, Chang Y and Lee Y H 2007 J. Am. Chem. Soc. 129 7758
|
[12] |
Tantang H, Ong J Y, Loh C L, Dong X C, Chen P, Chen Y, Hu X, Tan L P and Li L J 2009 Carbon 47 1867
|
[13] |
Shim D, Jung S H, Han S Y, Shin K, Lee K H and Han J H 2011 Chem. Commun. 47 5202
|
[14] |
Yang S B, Kong B S and Jung H T 2012 J. Phys. Chem. C 116 25581
|
[15] |
Lee R S, Kim H J, Fischer J E, Thess A and Smalley R E 1997 Nature 388 255
|
[16] |
Wei B Q, Spolenak R, Kohler-Redlich P, Ruhle M and Arzt E 1999 Appl. Phys. Lett. 74 3149
|
[17] |
Kim K K, Yoon S M, Park H K, Shin H J, Kim S M, Bae J J, Cui Y, Kim J M, Choi J Y and Lee Y H 2010 New J. Chem. 34 2183
|
[18] |
Ma W, Song L, Yang R, Zhang T, Zhao Y, Sun L, Ren Y, Liu D, Liu L, Shen J, Zhang Z, Xiang Y, Zhou W and Xie S 2007 Nano Lett. 7 2307
|
[19] |
Kim K K, Bae J J, Park H K, Kim S M, Geng H Z, Park K A, Shin H J, Yoon S-M, Benayad A, Choi J Y and Lee Y H 2008 J. Am. Chem. Soc. 130 12757
|
[20] |
Barnes T M, Reese M O, Bergeson J D, Larsen B A, Blackburn J L, Beard M C, Bult J and van de Lagemaat J 2012 Adv. Energy Mater. 2 353
|
[21] |
Barnes T M, Bergeson J D, Tenent R C, Larsen B A, Teeter G, Jones K M, Blackburn J L and van de Lagemaat J 2010 Appl. Phys. Lett. 96 243309
|
[22] |
Li G, Yao Y, Yang H, Shrotriya V, Yang G and Yang Y 2007 Adv. Funct. Mater. 17 1636
|
[23] |
Salvatierra R V, Cava C E, Roman L S and Zarbin A J G 2013 Adv. Funct. Mater. 23 1490
|
[24] |
Seok-In N, Jae-Seon L, Yong-Jin N, Tae-Wook K, Seok-Soon K, Han-Ik J and Sungho L 2013 Sol. Energy Mater. Sol. Cells 115 1
|
[25] |
Kim S, Wang X, Yim J H, Tsoi W C, Kim J S, Lee S and de Mello J C 2012 J. Photon. Energy 2 021010
|
[26] |
Palilis L C, Vasilopoulou M, Douvas A M, Georgiadou D G, Kennou S, Stathopoulos N A, Constantoudis V and Argitis P 2013 Sol. Energy Mater. Sol. Cells 114 205
|
[27] |
Wang G, Jiu T, Sun C, Li J, Li P, Lu F and Fang J 2014 ACS Appl. Mater. Interfaces 6 833
|
[28] |
Lipomi D J, Vosgueritchian M, Tee B C K, Hellstrom S L, Lee J A, Fox C H and Bao Z N 2011 Nat. Nanotechnol. 6 788
|
[29] |
Taohong Wang C C, Kunping Guo, Guo Chen, Tao Xu, Bin Wei 2016 Chin. Phys. B 25 038402
|
[30] |
Jeon I, Cui K, Chiba T, Anisimov A, Nasibulin A G, Kauppinen E I, Maruyama S and Matsuo Y 2015 J. Am. Chem. Soc. 137 7982
|
[31] |
Choi E S, Jeon Y J, Kim S S, Kim T W, Noh Y J, Kwon S N and Na S I 2015 Appl. Phys. Lett. 107 023301
|
[32] |
Zhao X, Xu C, Wang H, Chen F, Zhang W, Zhao Z, Chen L and Yang S 2014 ACS Appl. Mater. Interfaces 6 4329
|
[33] |
Du Pasquier A, Miller S and Chhowalla M 2006 Sol. Energy Mater. Sol. Cells 90 1828
|
[34] |
Jung J W, Jo J W and Jo W H 2011 Adv. Mater. 23 1782
|
[35] |
Tait J G, Worfolk B J, Maloney S A, Hauger T C, Elias A L, Buriak J M and Harris K D 2013 Sol. Energy Mater. Sol. Cells 110 98
|
[36] |
He Z, Zhong C, Huang X, Wong W-Y, Wu H, Chen L, Su S and Cao Y 2011 Adv. Mater. 23 4636
|
[37] |
Tahk D, Lee H H and Khang D Y 2009 Macromolecules 42 7079
|
[38] |
Savagatrup S, Printz A D, Wu H S, Rajan K M, Sawyer E J, Zaretski A V, Bettinger C J and Lipomi D J 2015 Synth. Met. 203 208
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|