Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(5): 054202    DOI: 10.1088/1674-1056/24/5/054202
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Phase and direction dependence of photorefraction in a low-frequency strong circular-polarized plane wave

Huang Yong-Sheng (黄永盛), Wang Nai-Yan (王乃彦), Tang Xiu-Zhang (汤秀章)
High Power KrF Excimer Laser Laboratory, China Institute of Atomic Energy, Beijing 102413, China
Abstract  Contrary to the superposition principle, it is well known that photorefraction exists in the vacuum with the presence of a strong static field, a laser field, or a rotational magnetic field. Different from the classical optical crystals, the refractive index also depends on the phase of the strong electromagnetic field. We obtain the phase and direction dependence of the refractive index of a probe wave incident in the strong field of a circular-polarized plane wave by solving the Maxwell equations corrected by the effective Lagrangian. It may provide a valuable theoretical basis to calculate the polarization evolution of waves in the strong electromagnetic circumstances of pulsar or neutron stars.
Keywords:  phase and direction dependence      circular-polarized plane wave      refractive index      polarization evolution  
Received:  10 October 2014      Revised:  19 November 2014      Accepted manuscript online: 
PACS:  42.25.Bs (Wave propagation, transmission and absorption)  
  42.50.-p (Quantum optics)  
  03.70.+k (Theory of quantized fields)  
  42.50.Pq (Cavity quantum electrodynamics; micromasers)  
Fund: Project supported by the National Basic Research Program of China (Grant No. 2011CB808104) and the National Natural Science Foundation of China (Grant No. 11105233).
Corresponding Authors:  Huang Yong-Sheng     E-mail:  huangyongs@gmail.com
About author:  42.25.Bs; 42.50.-p; 03.70.+k; 42.50.Pq

Cite this article: 

Huang Yong-Sheng (黄永盛), Wang Nai-Yan (王乃彦), Tang Xiu-Zhang (汤秀章) Phase and direction dependence of photorefraction in a low-frequency strong circular-polarized plane wave 2015 Chin. Phys. B 24 054202

[1] Abdukerim N, Li Z L and Xie B S 2013 Phys. Lett. B 726 820
[2] Su Q, Su W, Lv Z Q, Jiang M, Lu X, Sheng Z M and Grobe R 2012 Phys. Rev. Lett. 109 253202
[3] Adler S L and Schubert C 1996 Phys. Rev. Lett. 77 1695
[4] Heyl J S and Hernquist L 1997 J. Phys. A: Math. Gen. 30 6485
[5] Zavattini E, Zavattini G, Ruoso G, Polacco E, Milotti E, Karuza M, Gastaldi U, Di Domenico G, Della Valle F, Cimino R, Carusotto S, Cantatore G and Bregant M (PVLAS Collaboration) 2007 Nucl. Phys. B, Proc. Suppl. 164 264
[6] Della Valle F, Gastaldi U, Messineo G, Milotti E, Pengo R, Piemontese L, Ruoso G and Zavattini G 2013 New J. Phys. 15 053026
[7] Adler S L 2007 J. Phys. A: Math. Theor. 40 F143
[8] Biswas S and Melnikov K 2007 Phys. Rev. D 75 053003
[9] Kryuchkyan G Y and Hatsagortsyan K Z 2011 Phys. Rev. Lett. 107 053604
[10] Fedotov A M, Narozhny N B, Mourou G and Korn G 2010 Phys. Rev. Lett. 105 080402
[11] Bell A R and Kirk J G 2008 Phys. Rev. Lett. 101 200403
[12] Gies H, Karbstein F and Seegert N 2013 New J. Phys. 15 083002
[13] Wang Z Y, Shi S J and Qiu Q 2014 Chin. Phys. B 23 034201
[14] Heyl J S and Hernquist L 1997 Phys. Rev. D 55 2449
[15] Heyl J S and Shaviv N J 2000 Mon. Not. R. Astron. Soc. 311 555
[16] King B, Piazza A D and Keitel C H 2010 Nat. Photon. 4 92
[17] King B, Piazza A D and Keitel C H 2010 Phys. Rev. A 82 032114
[18] Kubo H and Nagata R 1983 J. Opt. Soc. Am. 73 1719
[19] Barnard J J 1986 The Astrophysical Journal 303 280
[20] Cheng A F and Ruderman M A 1979 The Astrophysical Journal 229 348
[21] Hattori K and Itakura K 2013 Ann. Phys. 330 23
[22] Karbstein F 2013 Phys. Rev. D 88 085033
[23] Gies H, Karbstein F and Shaisultanov R 2014 Phys. Rev. D 90 033007
[24] Becker W and Mitter H 1975 J. Phys. A 8 1638
[25] Hattori K and Itakura K 2013 Ann. Phys. 334 58
[26] Baier v N, Mil'shtein A I and Strakhovenk V M 1976 Sov. Phys. JETP 42 961
[27] Affleck I 1988 J. Phys. A 21 693
[28] Piazza A D, Hatsagortsyan K Z and Keitel C H 2006 Phys. Rev. Lett. 97 083603
[29] Heisenberg W and Euler H 1936 Z. Physik 98 714
[30] Baring M G and Harding A K 2009 The Astrophysical Journal 507 L55
[31] Wang C and Lai D 2009 Monthly Notices of the Royal Astronomical Society 398 515
[32] Lai D and Ho W C G 2003 Phys. Rev. Lett. 91 071101
[33] Pavlov G G, Shibanov Y A, Ventura J and Zavlin V E 1994 Astronomy & Astrophysics 289 837
[34] Rajagopal M, Romani R W and Miller M C 1997 The Astrophysical Journal 479 347
[35] Shaviv N J, Heyl J S and Lithwick Y 1996 Mon. Not. R. Astron. Soc. 306 333
[36] Adelsberg M V and Lai D 2006 Mon. Not. R. Astron. Soc. 373 1495
[37] Potekhin A Y, Suleimanov V F, Adelsberg M V and Werner K 2012 Astronomy & Astrophysics 546 A121
[1] Numerical simulation of a truncated cladding negative curvature fiber sensor based on the surface plasmon resonance effect
Zhichao Zhang(张志超), Jinhui Yuan(苑金辉), Shi Qiu(邱石), Guiyao Zhou(周桂耀), Xian Zhou(周娴), Binbin Yan(颜玢玢), Qiang Wu(吴强), Kuiru Wang(王葵如), and Xinzhu Sang(桑新柱). Chin. Phys. B, 2023, 32(3): 034208.
[2] Design of a coated thinly clad chalcogenide long-period fiber grating refractive index sensor based on dual-peak resonance near the phase matching turning point
Qianyu Qi(齐倩玉), Yaowei Li(李耀威), Ting Liu(刘婷), Peiqing Zhang(张培晴),Shixun Dai(戴世勋), and Tiefeng Xu(徐铁峰). Chin. Phys. B, 2023, 32(1): 014204.
[3] Independently tunable dual resonant dip refractive index sensor based on metal—insulator—metal waveguide with Q-shaped resonant cavity
Haowen Chen(陈颢文), Yunping Qi(祁云平), Jinghui Ding(丁京徽), Yujiao Yuan(苑玉娇), Zhenting Tian(田振廷), and Xiangxian Wang(王向贤). Chin. Phys. B, 2022, 31(3): 034211.
[4] Refractive index sensing of double Fano resonance excited by nano-cube array coupled with multilayer all-dielectric film
Xiangxian Wang(王向贤), Jian Zhang(张健), Jiankai Zhu(朱剑凯), Zao Yi(易早), and Jianli Yu(余建立). Chin. Phys. B, 2022, 31(2): 024210.
[5] High-sensitivity refractive index sensors based on Fano resonance in a metal-insulator-metal based arc-shaped resonator coupled with a rectangular stub
Shubin Yan(闫树斌), Hao Su(苏浩), Xiaoyu Zhang(张晓宇), Yi Zhang(张怡), Zhanbo Chen(陈展博), Xiushan Wu(吴秀山), and Ertian Hua(华尔天). Chin. Phys. B, 2022, 31(10): 108103.
[6] On the structural and optical properties investigation of annealed Zn nanorods in the oxygen flux
Fatemeh Abdi. Chin. Phys. B, 2021, 30(11): 117802.
[7] Novel high-quality Fano resonance based on metal-insulator-metal waveguide with L-shaped resonators
Changsong Wu(伍长松) and Jun Zhu(朱君). Chin. Phys. B, 2021, 30(10): 104210.
[8] Thermal stability of magnetron sputtering Ge-Ga-S films
Lei Niu(牛磊), Yimin Chen(陈益敏), Xiang Shen(沈祥), Tiefeng Xu(徐铁峰). Chin. Phys. B, 2020, 29(8): 087803.
[9] Pulse generation in Yb-doped polarization-maintaining fiber laser by nonlinear polarization evolution
Cheng-Bin Liang(梁成斌), Yan-Rong Song(宋晏蓉), Zi-Kai Dong(董自凯), Yun-Feng Wu(吴云峰), Jin-Rong Tian(田金荣), Run-Qin Xu(徐润亲). Chin. Phys. B, 2020, 29(7): 074206.
[10] Refractive index of ionic liquids under electric field: Methyl propyl imidazole iodide and several derivatives
Ji Zhou(周吉), Shi-Kui Dong(董士奎), Zhi-Hong He(贺志宏), Yan-Hu Zhang(张彦虎). Chin. Phys. B, 2020, 29(4): 047801.
[11] Ultra wide sensing range plasmonic refractive index sensor based on nano-array with rhombus particles
Jiankai Zhu(朱剑凯), Xiangxian Wang(王向贤), Xiaoxiong Wu(吴枭雄), Yingwen Su(苏盈文), Yueqi Xu(徐月奇), Yunping Qi(祁云平), Liping Zhang(张丽萍), and Hua Yang(杨华)$. Chin. Phys. B, 2020, 29(11): 114204.
[12] Enhanced reflection chiroptical effect of planar anisotropic chiral metamaterials placed on the interface of two media
Xiu Yang(杨秀), Tao Wei(魏涛), Feiliang Chen(陈飞良), Fuhua Gao(高福华), Jinglei Du(杜惊雷)†, and Yidong Hou(侯宜栋)‡. Chin. Phys. B, 2020, 29(10): 107303.
[13] Dynamical anisotropic magnetoelectric effects at ferroelectric/ferromagnetic insulator interfaces
Yaojin Li(李耀进), Vladimir Koval, Chenglong Jia(贾成龙). Chin. Phys. B, 2019, 28(9): 097501.
[14] A theoretical study of a plasmonic sensor comprising a gold nano-disk array on gold film with a SiO2 spacer
Xiangxian Wang(王向贤), Jiankai Zhu(朱剑凯), Huan Tong(童欢), Xudong Yang(杨旭东), Xiaoxiong Wu(吴枭雄), Zhiyuan Pang(庞志远), Hua Yang(杨华), Yunping Qi(祁云平). Chin. Phys. B, 2019, 28(4): 044201.
[15] Analysis of optical properties of bio-smoke materials in the 0.25-14 μm band
Xinying Zhao(赵欣颖), Yihua Hu(胡以华), Youlin Gu(顾有林), Xi Chen(陈曦), Xinyu Wang(王新宇), Peng Wang(王鹏), Xiao Dong(董骁). Chin. Phys. B, 2019, 28(3): 034201.
No Suggested Reading articles found!