Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(1): 017506    DOI: 10.1088/1674-1056/24/1/017506
Special Issue: TOPICAL REVIEW — Magnetism, magnetic materials, and interdisciplinary research
TOPICAL REVIEW—Magnetism, magnetic materials, and interdisciplinary research Prev   Next  

Dynamics of magnetic skyrmions

Liu Ye-Hua (刘冶华), Li You-Quan (李有泉)
Department of Physics, Zhejiang University, Hangzhou 310027, China
Abstract  

We review the recent progress on the magnetic skyrmions in chiral magnetic materials. The magnetic skyrmion is a topological spin configuration with localized spatial extent, which could be thought of as an emergent rigid particle, owing to its particular topological and chiral properties. Static skyrmionic configurations have been found in various materials with different transport and thermodynamic properties. The magnetic skyrmions respond to externally applied fields in a very unique way, and their coupling to other quasiparticles in solid-state systems gives rise to the emergent electrodynamics. Being not only theoretically important, the magnetic skyrmion is also very promising to be the information carrier in next generation spintronic devices.

Keywords:  skyrmion      chiral magnet      manipulation  
Received:  23 September 2014      Revised:  09 December 2014      Accepted manuscript online: 
PACS:  75.70.Kw (Domain structure (including magnetic bubbles and vortices))  
  75.78.-n (Magnetization dynamics)  
  75.30.Ds (Spin waves)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 11074216 and 11274272) and the Fundamental Research Funds for the Central Universities of China.

Corresponding Authors:  Li You-Quan     E-mail:  yqli@zju.edu.cn

Cite this article: 

Liu Ye-Hua (刘冶华), Li You-Quan (李有泉) Dynamics of magnetic skyrmions 2015 Chin. Phys. B 24 017506

[1] Skyrme T H R 1962 Nucl. Phys. 31 556
[2] Rößler U K, Bogdanov A N and Pfleiderer C 2006 Nature 442 797
[3] Mühlbauer S, Binz B, Jonietz F, Pfleiderer C, Rosch A, Neubauer A, Georgii R and Böni P 2009 Science 323 915
[4] Han J H, Zang J, Yang Z, Park J H and Nagaosa N 2010 Phys. Rev. B 82 094429
[5] Yu X Z, Onose Y, Kanazawa N, Park J H, Han J H, Matsui Y, Nagaosa N and Tokura Y 2010 Nature 465 901
[6] Seki S, Yu X Z, Ishiwata S and Tokura Y 2012 Science 336 198
[7] Yu X Z, Kanazawa N, Onose Y, Kimoto K, Zhang W Z, Ishiwata S, Matsui Y and Tokura Y 2011 Nature Materials 10 106
[8] Heinze S, Bergmann K v, Menzel M, Brede J, Kubetzka A,Wiesendanger R, Bihlmayer G and Blügel S 2011 Nat. Phys. 7 713
[9] Seki S, Kim J H, Inosov D S, Georgii R, Keimer B, Ishiwata S and Tokura Y 2012 Phys. Rev. B 85 220406
[10] Seki S, Ishiwata S and Tokura Y 2012 Phys. Rev. B 86 060403
[11] Jonietz F, Mühlbauer S, Pfleiderer C, Neubauer A, Münzer W, Bauer A, Adams T, Georgii R, Böni P, Duine R A, Everschor K, Garst M and Rosch A 2010 Science 330 1648
[12] Liu Y H and Li Y Q 2013 J. Phys.: Condens. Matter 25 076005
[13] Liu Y H, Li Y Q and Han J H 2013 Phys. Rev. B 87 100402
[14] Nagaosa N and Tokura Y 2013 Nature Nanotechnology 8 899
[15] Mochizuki M 2012 Phys. Rev. Lett. 108 017601
[16] Lin S Z, Batista C D and Saxena A 2014 Phys. Rev. B 89 024415
[17] Yi S D, Onoda S, Nagaosa N and Han J H 2009 Phys. Rev. B 80 054416
[18] Schulz T, Ritz R, Bauer A, Halder M, Wagner M, Franz C, Pfleiderer C, Everschor K, Garst M and Rosch A 2012 Nat. Phys. 8 301
[19] Lee M, KangW, Onose Y, Tokura Y and Ong N P 2009 Phys. Rev. Lett. 102 186601
[20] Li Y, Kanazawa N, Yu X Z, Tsukazaki A, Kawasaki M, Ichikawa M, Jin X F, Kagawa F and Tokura Y 2013 Phys. Rev. Lett. 110 117202
[21] Hoogdalem K A v, Tserkovnyak Y and Loss D 2013 Phys. Rev. B 87 024402
[22] Kong L and Zang J 2013 Phys. Rev. Lett. 111 067203
[23] Lin S, Batista C D, Reichhardt C and Saxena A 2014 Phys. Rev. Lett. 112 187203
[24] Iwasaki J, Beekman A J and Nagaosa N 2014 Phys. Rev. B 89 064412
[25] Malozemoff A P and Slonczewski J C 1979 Magnetic Domain Walls in Bubble Materials (Academic Press)
[26] Rajaraman R 1987 Solitons and Instantons (North-Holland)
[27] Volovik G 2009 The Universe in a Helium Droplet (OUP Oxford)
[28] Coleman S 1985 Aspects of Symmetry (Cambridge University Press)
[29] Bak P and Jensen M H 1980 J. Phys. C 13 L881
[30] Bogdanov A and Hubert A 1994 J. Magn. Magn. Mater. 138 255
[31] Bogdanov A and Hubert A 1999 J. Magn. Magn. Mater. 195 182
[32] Dzyaloshinsky I 1958 J. Phys. Chem. Solids 4 241
[33] Moriya T 1960 Phys. Rev. 120 91
[34] Shekhtman L, Entin-Wohlman O and Aharony A 1992 Phys. Rev. Lett. 69 836
[35] Chaikin P M and Lubensky T C 2000 Principles of Condensed Matter Physics (Cambridge University Press)
[36] Altland A and Simons B D 2010 Condensed Matter Field Theory (Cambridge University Press)
[37] Li Y Q, Liu Y H and Zhou Y 2011 Phys. Rev. B 84 205123
[38] Gilmore R 2006 Lie Groups, Lie Algebras, and Some of Their Applications (Dover Publications)
[39] Chern S S, Chen W H and Lam K S 1999 Lectures on Differential Geometry (World Scientific Publishing Company)
[40] Jin P Q, Li Y Q and Zhang F C 2006 J. Phys. A: Math. Gen. 39 7115
[41] Lu L H and Li Y Q 2007 Phys. Rev. A 76 023410
[42] Xu X Q and Han J H 2011 Phys. Rev. Lett. 107 200401
[43] Xu X Q and Han J H 2012 Phys. Rev. Lett. 108 185301
[44] Zhu S and Li Y Q 2014 J. Phys.: Condens. Matter 26 395901
[45] Freeman M R and Choi B C 2001 Science 294 1484
[46] Uchida M, Onose Y, Matsui Y and Tokura Y 2006 Science 311 359
[47] Uchida M, Nagaosa N, He J P, Kaneko Y, Iguchi S, Matsui Y and Tokura Y 2008 Phys. Rev. B 77 184402
[48] Tonomura A, Yu X Z, Yanagisawa K, Matsuda T, Onose Y, Kanazawa N, Park H S and Tokura Y 2012 Nano Lett. 12 1673
[49] Buhrandt S and Fritz L 2013 Phys. Rev. B 88 195137
[50] Milde P, Köhler D, Seidel J, Eng L M, Bauer A, Chacon A, Kindervater J, Mühlbauer S, Pfleiderer C, Buhrandt S, Schütte C and Rosch A 2013 Science 340 1076
[51] Rybakov F N, Borisov A B and Bogdanov A N 2013 Phys. Rev. B 87 094424
[52] Park J H and Han J H 2011 Phys. Rev. B 83 184406
[53] Kanazawa N, Onose Y, Arima T, Okuyama D, Ohoyama K, Wakimoto S, Kakurai K, Ishiwata S and Tokura Y 2011 Phys. Rev. Lett. 106 156603
[54] Kanazawa N, Kim J H, Inosov D S, White J S, Egetenmeyer N, Gavilano J L, Ishiwata S, Onose Y, Arima T, Keimer B and Tokura Y 2012 Phys. Rev. B 86 134425
[55] Yu X Z, Mostovoy M, Tokunaga Y, Zhang W, Kimoto K, Matsui Y, Kaneko Y, Nagaosa N and Tokura Y 2012 Proc. Natl Acad. Sci. USA 109 8856
[56] Rosch A 2012 Proc. Natl Acad. Sci. USA 109 8793
[57] Zhou Y, Iacocca E, Dumas R K, Zhang F C and Å kerman J 2014 arXiv:1404.3281
[58] Du H, Ning W, Tian M and Zhang Y 2013 Phys. Rev. B 87 014401
[59] Dai Y Y, Wang H, Tao P, Yang T, Ren W J and Zhang Z D 2013 Phys. Rev. B 88 054403
[60] Iwasaki J, Mochizuki M and Nagaosa N 2013 Nat. Nanotechnol. 8 742
[61] Fert A, Cros V and Sampaio J 2013 Nat. Nanotechnol. 8 152
[62] Sampaio J, Cros V, Rohart S, Thiaville A and Fert A 2013 Nat. Nanotechnol. 8 839
[63] Fiebig M 2005 J. Phys. D 38 R123
[64] Tokura Y 2006 Science 312 1481
[65] Eerenstein W, Mathur N D and Scott J F 2006 Nature 442 759
[66] Cheong S W and Mostovoy M 2007 Nature Materials 6 13
[67] Chen H B, Zhou Y and Li Y Q 2013 Prog. in Phys. (in Chinese) 33 137
[68] Katsura H, Balatsky A V and Nagaosa N 2007 Phys. Rev. Lett. 98 027203
[69] Chen H B, Zhou Y and Li Y Q 2011 J. Phys.: Condens. Matter 23 066002
[70] Chen H B and Li Y Q 2013 Appl. Phys. Lett. 102 252906
[71] Jia C, Onoda S, Nagaosa N and Han J H 2006 Phys. Rev. B 74 224444
[72] Jia C, Onoda S, Nagaosa N and Han J H 2007 Phys. Rev. B 76 144424
[73] Katsura H, Nagaosa N and Balatsky A V 2005 Phys. Rev. Lett. 95 057205
[74] Chen H B, Zhou Y and Li Y Q 2013 J. Phys.: Condens. Matter 25 286004
[75] Bos J W G, Colin C V and Palstra T T M 2008 Phys. Rev. B 78 094416
[76] Adams T, Chacon A, Wagner M, Bauer A, Brandl G, Pedersen B, Berger H, Lemmens P and Pfleiderer C 2012 Phys. Rev. Lett. 108 237204
[77] Belesi M, Rousochatzakis I, Abid M, Rößler U K, Berger H and Ansermet J P 2012 Phys. Rev. B 85 224413
[78] White J S, Levatić I, Omrani A A, Egetenmeyer N, Prša K, Živković I, Gavilano J L, Kohlbrecher J, Bartkowiak M, Berger H and Rønnow H M 2012 J. Phys.: Condens. Matter 24 432201
[79] Mochizuki M and Seki S 2013 Phys. Rev. B 87 134403
[80] Okamura Y, Kagawa F, Mochizuki M, Kubota M, Seki S, Ishiwata S, Kawasaki M, Onose Y and Tokura Y 2013 Nat. Commun. 4 2391
[81] Murakawa H, Onose Y, Miyahara S, Furukawa N and Tokura Y 2010 Phys. Rev. Lett. 105 137202
[82] Romhányi J, Lajkó M and Penc K 2011 Phys. Rev. B 84 224419
[83] Omrani A A, White J S, Prša K, Živković I, Berger H, Magrez A, Liu Y H, Han J H and Rønnow H M 2014 Phys. Rev. B 89 064406
[84] Liu Y H, Han J H, Omrani A A, Rønnow H M and Li Y Q 2013 arXiv:1310.5293
[85] Chen H B, Liu Y H and Li Y Q 2014 J. Appl. Phys. 115 133913
[86] Zhang S and Li Z 2004 Phys. Rev. Lett. 93 127204
[87] Tatara G and Kohno H 2004 Phys. Rev. Lett. 92 086601
[88] Thiaville A, Nakatani Y, Miltat J and Suzuki Y 2005 Europhys. Lett. 69 990
[89] Barnes S E and Maekawa S 2005 Phys. Rev. Lett. 95 107204
[90] Zhang S and Zhang S S L 2009 Phys. Rev. Lett. 102 086601
[91] Everschor K, Garst M, Binz B, Jonietz F, Mühlbauer S, Pfleiderer C and Rosch A 2012 Phys. Rev. B 86 054432
[92] Nagaosa N, Yu X Z and Tokura Y 2012 Phil. Trans. R. Soc. A 370 5806
[93] Neubauer A, Pfleiderer C, Binz B, Rosch A, Ritz R, Niklowitz P G and Böni P 2009 Phys. Rev. Lett. 102 186602
[94] Stone M 1996 Phys. Rev. B 53 16573
[95] Zang J, Mostovoy M, Han J H and Nagaosa N 2011 Phys. Rev. Lett. 107 136804
[96] Tchoe Y and Han J H 2012 Phys. Rev. B 85 174416
[97] Zhou Y and Ezawa M 2014 Nat. Commun. 5 4652
[98] Yu X Z, Kanazawa N, Zhang W Z, Nagai T, Hara T, Kimoto K, Matsui Y, Onose Y and Tokura Y 2012 Nat. Commun. 3 988
[99] Lin S Z, Reichhardt C, Batista C D and Saxena A 2013 Phys. Rev. Lett. 110 207202
[100] Rosch A 2013 Nat. Nanotechnol. 8 160
[101] Thiele A A 1973 Phys. Rev. Lett. 30 230
[102] Makhfudz I, Krüger B and Tchernyshyov O 2012 Phys. Rev. Lett. 109 217201
[103] Tinkham M 2004 Introduction to Superconductivity (Dover Publications)
[104] Iwasaki J, Mochizuki M and Nagaosa N 2013 Nat. Commun. 4 1463
[105] Parkin S S P, Hayashi M and Thomas L 2008 Science 320 190
[106] Sun L, Cao R X, Miao B F, Feng Z, You B,Wu D, ZhangW, Hu A and Ding H F 2013 Phys. Rev. Lett. 110 167201
[107] Onose Y, Okamura Y, Seki S, Ishiwata S and Tokura Y 2012 Phys. Rev. Lett. 109 037603
[108] Moutafis C, Komineas S and Bland J A C 2009 Phys. Rev. B 79 224429
[109] Petrova O and Tchernyshyov O 2011 Phys. Rev. B 84 214433
[110] Bloch D, Voiron J 1975 Phys. Lett. A 51 259
[111] Pfleiderer C, McMullan G J, Julian S R and Lonzarich G G 1997 Phys. Rev. B 55 8330
[112] Pfleiderer C, Julian S R and Lonzarich G G 2001 Nature 414 427
[113] Doiron-Leyraud N,Walker I R, Taillefer L, Steiner M J, Julian S R and Lonzarich G G 2003 Nature 425 595
[114] Pfleiderer C, Böni P, Keller T, Rößler U K and Rosch A 2007 Science 316 1871
[115] Pfleiderer C, Reznik D, Pintschovius L, Löhneysen H v, Garst M and Rosch A 2004 Nature 427 227
[116] Pappas C, Lelièvre-Berna E, Bentley P, Falus P, Fouquet P and Farago B 2011 Phys. Rev. B 83 224405
[117] Binz B, Vishwanath A and Aji V 2006 Phys. Rev. Lett. 96 207202
[118] Binz B and Vishwanath A 2006 Phys. Rev. B 74 214408
[119] Ho K Y, Kirkpatrick T R, Sang Y and Belitz D 2010 Phys. Rev. B 82 134427
[120] Kirkpatrick T R and Belitz D 2010 Phys. Rev. Lett. 104 256404
[121] Belitz D and Kirkpatrick T R 2010 Phys. Rev. B 81 184419
[122] Ritz R, Halder M, Wagner M, Franz C, Bauer A and Pfleiderer C 2013 Nature 497 231
[123] Ritz R, Halder M, Franz C, Bauer A, Wagner M, Bamler R, Rosch A and Pfleiderer C 2013 Phys. Rev. B 87 134424
[124] Watanabe H, Parameswaran S A, Raghu S and Vishwanath A 2014 Phys. Rev. B 90 045145
[1] Skyrmion-based logic gates controlled by electric currents in synthetic antiferromagnet
Linlin Li(李林霖), Jia Luo(罗佳), Jing Xia(夏静), Yan Zhou(周艳), Xiaoxi Liu(刘小晰), and Guoping Zhao(赵国平). Chin. Phys. B, 2023, 32(1): 017506.
[2] Precisely controlling the twist angle of epitaxial MoS2/graphene heterostructure by AFM tip manipulation
Jiahao Yuan(袁嘉浩), Mengzhou Liao(廖梦舟), Zhiheng Huang(黄智恒), Jinpeng Tian(田金朋), Yanbang Chu(褚衍邦), Luojun Du(杜罗军), Wei Yang(杨威), Dongxia Shi(时东霞), Rong Yang(杨蓉), and Guangyu Zhang(张广宇). Chin. Phys. B, 2022, 31(8): 087302.
[3] Progress and challenges in magnetic skyrmionics
Haifeng Du(杜海峰) and Xiangrong Wang(王向荣). Chin. Phys. B, 2022, 31(8): 087507.
[4] Current-driven dynamics of skyrmion bubbles in achiral uniaxial magnets
Yaodong Wu(吴耀东), Jialiang Jiang(蒋佳良), and Jin Tang(汤进). Chin. Phys. B, 2022, 31(7): 077504.
[5] Non-volatile multi-state magnetic domain transformation in a Hall balance
Yang Gao(高阳), Jingyan Zhang(张静言), Pengwei Dou(窦鹏伟), Zhuolin Li(李卓霖), Zhaozhao Zhu(朱照照), Yaqin Guo(郭雅琴), Chaoqun Hu(胡超群), Weidu Qin(覃维都), Congli He(何聪丽), Shipeng Shen(申世鹏), Ying Zhang(张颖), and Shouguo Wang(王守国). Chin. Phys. B, 2022, 31(6): 067502.
[6] Manipulating vector solitons with super-sech pulse shapes
Yan Zhou(周延), Keyun Zhang(张克赟), Chun Luo(罗纯), Xiaoyan Lin(林晓艳), Meisong Liao(廖梅松), Guoying Zhao(赵国营), and Yongzheng Fang(房永征). Chin. Phys. B, 2022, 31(5): 054203.
[7] Multi-function terahertz wave manipulation utilizing Fourier convolution operation metasurface
Min Zhong(仲敏) and Jiu-Sheng Li(李九生). Chin. Phys. B, 2022, 31(5): 054207.
[8] Acoustic radiation force on a rigid cylinder near rigid corner boundaries exerted by a Gaussian beam field
Qin Chang(常钦), Yuchen Zang(臧雨宸), Weijun Lin(林伟军), Chang Su(苏畅), and Pengfei Wu(吴鹏飞). Chin. Phys. B, 2022, 31(4): 044302.
[9] Rotational manipulation of massive particles in a 2D acoustofluidic chamber constituted by multiple nonlinear vibration sources
Qiang Tang(汤强), Pengzhan Liu(刘鹏展), and Shuai Tang(唐帅). Chin. Phys. B, 2022, 31(4): 044301.
[10] High-efficiency unidirectional wavefront manipulation for broadband airborne sound with a planar device
Yang Tan(谭杨), Bin Liang(梁彬), and Jianchun Cheng(程建春). Chin. Phys. B, 2022, 31(3): 034303.
[11] Skyrmion transport driven by pure voltage generated strain gradient
Shan Qiu(邱珊), Jia-Hao Liu(刘嘉豪), Ya-Bo Chen(陈亚博), Yun-Ping Zhao(赵云平), Bo Wei(危波), and Liang Fang(方粮). Chin. Phys. B, 2022, 31(11): 117701.
[12] Switchable vortex beam polarization state terahertz multi-layer metasurface
Min Zhong(仲敏) and Jiu-Sheng Li(李九生). Chin. Phys. B, 2022, 31(11): 114201.
[13] Spin transfer nano-oscillator based on synthetic antiferromagnetic skyrmion pair assisted by perpendicular fixed magnetic field
Yun-Xu Ma(马云旭), Jia-Ning Wang(王佳宁), Zhao-Zhuo Zeng(曾钊卓), Ying-Yue Yuan(袁映月), Jin-Xia Yang(杨金霞), Hui-Bo Liu(刘慧博), Sen-Fu Zhang(张森富), Jian-Bo Wang(王建波), Chen-Dong Jin(金晨东), and Qing-Fang Liu(刘青芳). Chin. Phys. B, 2022, 31(10): 100501.
[14] Voltage-controllable magnetic skyrmion dynamics for spiking neuron device applications
Ming-Min Zhu(朱明敏), Shu-Ting Cui(崔淑婷), Xiao-Fei Xu(徐晓飞), Sheng-Bin Shi(施胜宾), Di-Qing Nian(年迪青), Jing Luo(罗京), Yang Qiu(邱阳), Han Yang(杨浛), Guo-Liang Yu(郁国良), and Hao-Miao Zhou (周浩淼). Chin. Phys. B, 2022, 31(1): 018503.
[15] A novel receiver-transmitter metasurface for a high-aperture-efficiency Fabry-Perot resonator antenna
Peng Xie(谢鹏), Guangming Wang(王光明), Binfeng Zong(宗彬锋), and Xiaojun Zou(邹晓鋆). Chin. Phys. B, 2021, 30(8): 084103.
No Suggested Reading articles found!