CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Ferroelectricity in hexagonal YFeO3 film at room temperature |
Zhang Run-Lan (张润兰)a b, Chen Chang-Le (陈长乐)a, Zhang Yun-Jie (张云婕)a, Xing Hui (邢辉)a, Dong Xiang-Lei (董祥雷)a, Jin Ke-Xin (金克新)a |
a Shaanxi Key Laboratory of Condensed Matter Structures and Properties, Northwestern Polytechnical University, Xi'an 710072, China; b College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an 710054, China |
|
|
Abstract In this paper we report the leakage current, ferroelectric and piezoelectric properties of the YFeO3 film with hexagonal structure, which was fabricated on Si(111) substrate by a simple sol-gel method. The leakage current test shows good characteristics as the leakage current density is 5.4× 10-6A/cm2 under 5 V. The dominant leakage mechanism is found to be an Ohmic behavior at low electric field and space-charge-limited conduction at high electric field region. The P-E measurements show ferroelectric hysteresis loops with small remnant polarization and coercive field at room temperature. The distinct and switchable domain structures on the nanometer scale are observed by piezoresponse force microscopy, which testifies to the ferroelectricity of the YFeO3 film further.
|
Received: 04 June 2014
Revised: 25 August 2014
Accepted manuscript online:
|
PACS:
|
77.55.Nv
|
(Multiferroic/magnetoelectric films)
|
|
77.84.-s
|
(Dielectric, piezoelectric, ferroelectric, and antiferroelectric materials)
|
|
68.37.Ps
|
(Atomic force microscopy (AFM))
|
|
73.40.-c
|
(Electronic transport in interface structures)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61471301, 61078057, 51202195, and 511172183), the Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20126102110045), and the NPU Foundation for Fundamental Research (Grant Nos. JC201155, JC201271, and JC20120246). |
Corresponding Authors:
Chen Chang-Le
E-mail: chenchl@nwpu.edu.cn
|
Cite this article:
Zhang Run-Lan (张润兰), Chen Chang-Le (陈长乐), Zhang Yun-Jie (张云婕), Xing Hui (邢辉), Dong Xiang-Lei (董祥雷), Jin Ke-Xin (金克新) Ferroelectricity in hexagonal YFeO3 film at room temperature 2015 Chin. Phys. B 24 017701
|
[1] |
Catalan G and Scott J F 2009 Adv. Mater. 21 2463
|
[2] |
Cheong S W and Mostovoy M 2007 Nat. Mater. 6 13
|
[3] |
Hill N A 2000 J. Phys. Chem. B 104 6694
|
[4] |
Lin Y H, Ying M, Li M, Wang X and Nan C W 2007 Appl. Phys. Lett. 90 222110
|
[5] |
Bi K, Wu W and Wang Y G 2011 Chin. Phys. B 20 067503
|
[6] |
Song Y Q, Zhou W P, Fang Y, Yang Y T, Wang L Y, Wang D H and Du Y W 2014 Chin. Phys. B 23 077505
|
[7] |
Wu T, Emmons M, Chung T K, Sorge J and Carman G P 2010 J. Appl. Phys. 107 09D912
|
[8] |
Qi X D, Dho J, Tomov R, Blamire M G and MacManus-Driscoll J L 2005 Appl. Phys. Lett. 86 062903
|
[9] |
Lin P T, Li X, Zhang L, Yin J H, Cheng X W, Wang Z H, Wu Y C and Wu G H 2014 Chin. Phys. B 23 047701
|
[10] |
Jeong Y K, Lee J H, Ahn S J, Song S W, Jang H M, Choi H and Scott J F 2012 J. Am. Chem. Soc. 134 1450
|
[11] |
Van-Aken B B, Palstra T T M, Filippetti A and Spaldin N A 2004 Nat. Mater. 3 164
|
[12] |
Talbayev D, LaForge A D, Trugman S A, Hur N, Taylor A J, Averitt R D and Basov D N 2008 Phys. Rev. Lett. 101 247601
|
[13] |
Gibbs A S, Knight K S and Lightfoot P 2011 Phys. Rev. B 83 094111
|
[14] |
Mathur S, Veith M, Rapalaviciute R, Shen H, Goya G F, Martins-Filho W L and Berquo T S 2004 Chem. Mat. 16 1906
|
[15] |
Downie L J, Goff R J, Kockelmann W, Forder S D, Parker J E, Morrison F D and Lightfoot P 2012 J. Solid State Chem. 190 52
|
[16] |
Li J, Singh U G, Schladt T D, Stalick J K, Scott S L and Seshadri R 2008 Chem. Mat. 20 6567
|
[17] |
Mizoguchi Y, Onodera H, Yamauchi H, Kagawa M, Syono Y and Hirai T 1996 Mat. Sci. Eng. A 218 164
|
[18] |
Jeong Y K, Lee J H, Ahn S J and Jang H M 2012 Chem. Mat. 24 2426
|
[19] |
Ahn S J, Lee J H, Jeong Y K, Na E H, Koo Y M and Jang H M 2013 Mater. Chem. Phys. 138 929
|
[20] |
Oak M A, Lee J H and Jang H M 2011 Phys. Rev. B 84 153106
|
[21] |
Luo B C, Wang D Y, Duan M M and Li S 2013 Appl. Surf. Sci. 270 377
|
[22] |
Lahmar A, Zhao K, Habouti S, Dietze M, Solterbeck C H and Es-Souni M 2011 Solid State Ionics 202 1
|
[23] |
Parashar S, Raju A R, Rao C N R, Victor P and Krupanidhi S B 2003 J. Phys. D: Appl. Phys. 36 2134
|
[24] |
Fan F, Luo B C, Duan M M and Chen C L 2013 Chin. J. Phys. 51 834
|
[25] |
Zeng H R, Li G R, Yin Q R and Xu Z K 2003 Mater. Sci. Eng. B 99 234
|
[26] |
Zhang R L, Chen C L, Duan M M, Niu L W and Jin K X 2014 J. Crystal Growth 390 56
|
[27] |
Gruverman A, Rodriguez B J, Nemanich R J and Kingon A I 2002 J. Appl. Phys. 92 2734
|
[28] |
Ferri A, Saitzek S, Da Costa A, Desfeux R, Leclerc G, Bouregba R and Poullain G 2008 Surf. Sci. 602 1987
|
[29] |
Jang Y H, Kim C H, Seo S J and Cho J H 2013 Thin Solid Film. 548 52
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|