Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(8): 084103    DOI: 10.1088/1674-1056/ac0788
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

A novel receiver-transmitter metasurface for a high-aperture-efficiency Fabry-Perot resonator antenna

Peng Xie(谢鹏), Guangming Wang(王光明), Binfeng Zong(宗彬锋), and Xiaojun Zou(邹晓鋆)
Air and Missile Defense College, Air Force Engineering University, Xi'an 710051, China
Abstract  This paper presents a novel coupled receiver-transmitter metasurface (MS) which is used to realize a high-aperture-efficiency Fabry-Perot resonator antenna. The unit cell of the MS adopts a slot-coupling procedure to realize energy transmission from the receiver patch to the radiator patch. This approach makes it easier to independently control the transmission magnitude and phase. Based on this characteristic, the transmission coefficients of different unit cells on the MS can be optimized by a genetic algorithm. Then, nearly uniform electric amplitude and phase distribution across the aperture field of the antenna are achieved. Therefore, the gain and aperture efficiency of the antenna are improved. A prototype of the optimized antenna is fabricated and measured to validate the design. The measured gain of the fabricated antenna reaches 17.3 dBi with an aperture efficiency of 94.5%. A higher aperture efficiency is obtained with the proposed antenna which has a low profile and simple structure.
Keywords:  receiver-transmitter metasurface      transmission coefficients manipulation      genetic algorithm      high aperture efficiency      Fabry-Perot resonator antenna  
Received:  20 February 2021      Revised:  07 April 2021      Accepted manuscript online:  03 June 2021
PACS:  41.20.Jb (Electromagnetic wave propagation; radiowave propagation)  
  73.20.Mf (Collective excitations (including excitons, polarons, plasmons and other charge-density excitations))  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61871394) and Natural Science Foundation of Shanxi Province, China (Grant No. 2020JQ-482).
Corresponding Authors:  Guangming Wang     E-mail:  wgming01@sina.com

Cite this article: 

Peng Xie(谢鹏), Guangming Wang(王光明), Binfeng Zong(宗彬锋), and Xiaojun Zou(邹晓鋆) A novel receiver-transmitter metasurface for a high-aperture-efficiency Fabry-Perot resonator antenna 2021 Chin. Phys. B 30 084103

[1] Liu G, Wang H J, Jiang J S, Xue F and Yi M 2015 IEEE Anten. Wirel. Propag. Lett. 14 1415
[2] Tao Z, Jiang W X, Ma H F and Cui T J 2018 IEEE Trans. Anten. Propag. 66 16
[3] Ren J Y, Jiang W, Zhang K Z and Gong S X 2018 IEEE Anten. Wirel. Propag. Lett. 17 853
[4] Zarbakhsh S, Akbari M, Samadi F and Sebak A R 2019 IEEE Trans. Anten. Propag. 67 16
[5] Trentini G V 1956 IEEE Trans. Anten. Propag. 4 666
[6] Leger L, Serier C, Chantalat R, Thevenot M, Monediere T and Jecko B 2004 Annal. Télécommun. 59 242
[7] Singh A K, Abegaonkar M P and Koul S K 2017 IEEE Anten. Wirel. Propag. Lett. 16 2388
[8] Vettikalladi H, Lafond O and Himdi M 2009 IEEE Anten. Wirel. Propag. Lett. 8 1422
[9] Dutta K, Guha D and Kumar C 2017 IEEE Trans. Anten. Propag. 65 1399
[10] Lalbakhsh A, Afzal M U, Esselle K P, Smith S L and Zeb B A 2019 IEEE Trans. Anten. Propag. 67 1916
[11] Afzal M U, Esselle K P and Zeb B A 2015 IEEE Trans. Anten. Propag. 63 3390
[12] Lalbakhsh A, Afzal M U, Esselle K P and Smith S L 2019 IEEE Trans. Anten. Propag. 67 1975
[13] Zhou L, Chen X and Duan X 2018 IEEE Trans. Anten. Propag. 66 2061
[14] Xie P, Wang G M, Li H P, Liang J G and Gao X J 2019 IEEE Access 7 176170
[15] Li H P, Wang G M, Cai T, Hou H S and Guo W L 2019 Phys. Rev. Applied 11 014043
[16] Ji W Y, Cai T, Wang G M, Li H P, Wang C Y, Hou H S and Zhang C B 2019 Opt. Express 27 2844
[1] Adaptive genetic algorithm-based design of gamma-graphyne nanoribbon incorporating diamond-shaped segment with high thermoelectric conversion efficiency
Jingyuan Lu(陆静远), Chunfeng Cui(崔春凤), Tao Ouyang(欧阳滔), Jin Li(李金), Chaoyu He(何朝宇), Chao Tang(唐超), and Jianxin Zhong(钟建新). Chin. Phys. B, 2023, 32(4): 048401.
[2] Memristor's characteristics: From non-ideal to ideal
Fan Sun(孙帆), Jing Su(粟静), Jie Li(李杰), Shukai Duan(段书凯), and Xiaofang Hu(胡小方). Chin. Phys. B, 2023, 32(2): 028401.
[3] Characteristics of piecewise linear symmetric tri-stable stochastic resonance system and its application under different noises
Gang Zhang(张刚), Yu-Jie Zeng(曾玉洁), and Zhong-Jun Jiang(蒋忠均). Chin. Phys. B, 2022, 31(8): 080502.
[4] Design optimization of broadband extreme ultraviolet polarizer in high-dimensional objective space
Shang-Qi Kuang(匡尚奇), Bo-Chao Li(李博超), Yi Wang(王依), Xue-Peng Gong(龚学鹏), and Jing-Quan Lin(林景全). Chin. Phys. B, 2022, 31(7): 077802.
[5] A spintronic memristive circuit on the optimized RBF-MLP neural network
Yuan Ge(葛源), Jie Li(李杰), Wenwu Jiang(蒋文武), Lidan Wang(王丽丹), and Shukai Duan(段书凯). Chin. Phys. B, 2022, 31(11): 110702.
[6] Refocusing and locating effect of fluorescence scattering field
Jian-Gong Cui(崔建功), Ya-Xin Yu(余亚鑫), Xiao-Xia Chu(楚晓霞), Rong-Yu Zhao(赵荣宇), Min Zhu(祝敏), Fan Meng(孟凡), and Wen-Dong Zhang(张文栋). Chin. Phys. B, 2021, 30(12): 124210.
[7] Optimized dithering technique in frequency domain for high-quality three-dimensional depth data acquisition
Ning Cai(蔡宁), Zhe-Bo Chen(陈浙泊), Xiang-Qun Cao(曹向群), Bin Lin(林斌). Chin. Phys. B, 2019, 28(8): 084202.
[8] Multi-objective strategy to optimize dithering technique for high-quality three-dimensional shape measurement
Ning Cai(蔡宁), Zhe-Bo Chen(陈浙泊), Xiang-Qun Cao(曹向群), Bin Lin(林斌). Chin. Phys. B, 2019, 28(10): 104210.
[9] Broadband achromatic phase retarder based on metal-multilayer dielectric grating
Na Li(李娜), Wei-Jin Kong(孔伟金), Feng Xia(夏峰), Mao-Jin Yun(云茂金). Chin. Phys. B, 2018, 27(5): 054202.
[10] Electronic transport properties of lead nanowires
Lishu Zhang(张力舒), Yi Zhou(周毅), Xinyue Dai(代新月), Zhenyang Zhao(赵珍阳), Hui Li(李辉). Chin. Phys. B, 2017, 26(7): 073102.
[11] Optimization of multi-color laser waveform for high-order harmonic generation
Cheng Jin(金成), C D Lin(林启东). Chin. Phys. B, 2016, 25(9): 094213.
[12] An improved genetic algorithm with dynamic topology
Kai-Quan Cai(蔡开泉), Yan-Wu Tang(唐焱武), Xue-Jun Zhang(张学军), Xiang-Min Guan(管祥民). Chin. Phys. B, 2016, 25(12): 128904.
[13] Application of the nonlinear time series prediction method of genetic algorithm for forecasting surface wind of point station in the South China Sea with scatterometer observations
Jian Zhong(钟剑), Gang Dong(董钢), Yimei Sun(孙一妹), Zhaoyang Zhang(张钊扬), Yuqin Wu(吴玉琴). Chin. Phys. B, 2016, 25(11): 110502.
[14] Design of ultra wideband microwave absorber effectual for objects of arbitrary shape
Gong Yuan-Xun (宫元勋), Zhou Zhong-Xiang (周忠祥), Jiang Jian-Tang (姜建堂), Zhao Hong-Jie (赵宏杰). Chin. Phys. B, 2015, 24(12): 124101.
[15] Predictive control of a chaotic permanent magnet synchronous generator in a wind turbine system
Manal Messadi, Adel Mellit, Karim Kemih, Malek Ghanes. Chin. Phys. B, 2015, 24(1): 010502.
No Suggested Reading articles found!