Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(7): 070302    DOI: 10.1088/1674-1056/23/7/070302
GENERAL Prev   Next  

Global entanglement in ground state of {Cu3} single-molecular magnet with magnetic field

Li Ji-Qiang (李纪强), Zhou Bin (周斌)
Department of Physics, Hubei University, Wuhan 430062, China
Abstract  We investigate global entanglement in the ground state of single-molecular magnet Na9[Cu3Na3(H2 O)9(α -AsW9O33)2]· 26H2O with an external magnetic field. The concurrence, tangle, and measure function Q, which characterize the pairwise entanglement, 3-party entanglement and total entanglement, respectively, are calculated numerically at zero temperature. The results show that the magnitude and direction of the applied magnetic field play a significant role in the properties of three kinds of entanglement measures. We give a physical interpretation of the variation of the global entanglement with the magnetic field. Finally, the phase diagram of the global entanglement characterized by the critical magnetic fields is presented.
Keywords:  global entanglement      single-molecular magnet      triangular spin ring  
Received:  19 February 2014      Revised:  21 March 2014      Accepted manuscript online: 
PACS:  03.65.Ud (Entanglement and quantum nonlocality)  
  03.67.Mn (Entanglement measures, witnesses, and other characterizations)  
  75.10.Jm (Quantized spin models, including quantum spin frustration)  
  75.50.Xx (Molecular magnets)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11274102), the Program for New Century Excellent Talents in Universities, China (Grant No. NCET-11-0960), and the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20134208110001).
Corresponding Authors:  Zhou Bin     E-mail:  binzhou@hubu.edu.cn
About author:  03.65.Ud; 03.67.Mn; 75.10.Jm; 75.50.Xx

Cite this article: 

Li Ji-Qiang (李纪强), Zhou Bin (周斌) Global entanglement in ground state of {Cu3} single-molecular magnet with magnetic field 2014 Chin. Phys. B 23 070302

[1] Karlsson A and Bourennane M 1998 Phys. Rev. A 58 4394
[2] Hao J C, Li C F and Guo G C 2001 Phys. Rev. A 63 054301
[3] Bruß D, DiVincenzo D P, Ekert A, Fuchs C A, Macchiavello C and Smolin J A 1998 Phys. Rev. A 57 2368
[4] Amico L, Fazio R, Osterloh A and Vedral V 2008 Rev. Mod. Phys. 80 517
[5] Bennett C H, Popescu S, Rohrlich D, Smolin J A and Thapliyal A V 2000 Phys. Rev. A 63 012307
[6] Coffman V, Kundu J and Wootters W K 2000 Phys. Rev. A 61 052306
[7] Meyer D A and Wallach N R 2002 J. Math. Phys. 43 4273
[8] Brennen G K 2003 Quantum Inf. Comput. 3 619
[9] Rungta P, Bužek V, Caves C M, Hillery M and Milburn G J 2001 Phys. Rev. A 64 042315
[10] Hide J, Nakata Y and Murao M 2012 Phys. Rev. A 85 042303
[11] Yu C S and Song H S 2006 Phys. Rev. A 73 022325
[12] Montakhab A and Asadian A 2010 Phys. Rev. A 82 062313
[13] Wang Y F, Cao J P and Wang Y P 2005 Chin. Phys. Lett. 22 2151
[14] Wu K D, Zhou B and Cao W Q 2007 Phys. Lett. A 362 381
[15] Chen S R, Xia Y J and Man Z X 2010 Chin. Phys. B 19 050304
[16] Ren J Z, Shao X Q, Zhang S and Yeon K H 2010 Chin. Phys. B 19 100307
[17] Pan H Z and Kuang L M 2004 Chin. Phys. Lett. 21 424
[18] Xi X Q, Hao S R, Chen W X and Yue R H 2002 Chin. Phys. Lett. 19 1044
[19] Zhang Y L and Zhou B 2011 Acta Phys. Sin. 60 120301 (in Chinese)
[20] Thomas L, Lionti F, Ballou R, Gatteschi D, Sessoli R and Barbara B 1996 Nature 383 145
[21] Wernsdorfer W and Sessoli R 1999 Science 284 133
[22] Kortz U, Nellutla S, Stowe A C, Dalal N S, Rauwald U, Danquah W and Ravot D 2004 Inorg. Chem. 43 2308
[23] Choi K Y, Matsuda Y H, Nojiri H, Kortz U, Hussain F, Stowe A C, Ramsey C and Dalal N S 2006 Phys. Rev. Lett. 96 107202
[24] Stowe A C, Nellutla S, Dalal N S and Kortz U 2004 Eur. J. Inorg. Chem. 2004 3792
[25] Choi K Y, Dalal N S, Reyes A P, Kuhns P L, Matsuda Y H, Nojiri H, Mal S S and Kortz U 2008 Phys. Rev. B 77 024406
[26] Islam M F, Nossa J F, Canali C M and Pederson M 2010 Phys. Rev. B 82 155446
[27] Bogani L and Wernsdorfer W 2008 Nat. Mater. 7 179
[28] Leuenberger M N and Loss D 2001 Nature 410 789
[29] Zhou B, Tao R B, Shen S Q and Liang J Q 2002 Phys. Rev. A 66 010301
[30] Meier F, Levy J and Loss D 2003 Phys. Rev. B 68 134417
[31] Troiani F, Ghirri A, Affronte M, Carretta S, Santini P, Amoretti G, Piligkos S, Timco G and Winpenny R E P 2005 Phys. Rev. Lett. 94 207208
[32] Lehmann J, Gaita-Ariño A, Coronado E and Loss D 2007 Nat. Nanotech. 2 312
[33] Kortz U, Al-Kassem N K, Savelieff M G, Al Kadi N A and Sadakane M 2001 Inorg. Chem. 40 4742
[34] Trif M, Troiani F, Stepanenko D and Loss D 2008 Phys. Rev. Lett. 101 217201
[35] Hou J M, Du L, Ding J Y and Zhang W X 2010 Chin. Phys. B 19 110313
[36] Li J Q, Chen Z and Zhou B 2013 Acta Phys. Sin. 62 190302 (in Chinese)
[37] Hill S and Wootters W K 1997 Phys. Rev. Lett. 78 5022
[38] Wootters W K 1998 Phys. Rev. Lett. 80 2245
[39] Endrejat J and Büttner H 2005 Phys. Rev. A 71 012305
[1] Unified entropy entanglement with tighter constraints on multipartite systems
Qi Sun(孙琪), Tao Li(李陶), Zhi-Xiang Jin(靳志祥), and Deng-Feng Liang(梁登峰). Chin. Phys. B, 2023, 32(3): 030304.
[2] Entanglement and thermalization in the extended Bose-Hubbard model after a quantum quench: A correlation analysis
Xiao-Qiang Su(苏晓强), Zong-Ju Xu(许宗菊), and You-Quan Zhao(赵有权). Chin. Phys. B, 2023, 32(2): 020506.
[3] Transformation relation between coherence and entanglement for two-qubit states
Qing-Yun Zhou(周晴云), Xiao-Gang Fan(范小刚), Fa Zhao(赵发), Dong Wang(王栋), and Liu Ye(叶柳). Chin. Phys. B, 2023, 32(1): 010304.
[4] Measurement-device-independent one-step quantum secure direct communication
Jia-Wei Ying(应佳伟), Lan Zhou(周澜), Wei Zhong(钟伟), and Yu-Bo Sheng(盛宇波). Chin. Phys. B, 2022, 31(12): 120303.
[5] Quantum steerability of two qubits mediated by one-dimensional plasmonic waveguides
Ye-Qi Zhang(张业奇), Xiao-Ting Ding(丁潇婷), Jiao Sun(孙娇), and Tian-Hu Wang(王天虎). Chin. Phys. B, 2022, 31(12): 120305.
[6] Quantum correlation and entropic uncertainty in a quantum-dot system
Ying-Yue Yang(杨颖玥), Li-Juan Li(李丽娟), Liu Ye(叶柳), and Dong Wang(王栋). Chin. Phys. B, 2022, 31(10): 100303.
[7] Measurement-device-independent quantum secret sharing with hyper-encoding
Xing-Xing Ju(居星星), Wei Zhong(钟伟), Yu-Bo Sheng(盛宇波), and Lan Zhou(周澜). Chin. Phys. B, 2022, 31(10): 100302.
[8] Probabilistic quantum teleportation of shared quantum secret
Hengji Li(李恒吉), Jian Li(李剑), and Xiubo Chen(陈秀波). Chin. Phys. B, 2022, 31(9): 090303.
[9] Steering quantum nonlocalities of quantum dot system suffering from decoherence
Huan Yang(杨欢), Ling-Ling Xing(邢玲玲), Zhi-Yong Ding(丁智勇), Gang Zhang(张刚), and Liu Ye(叶柳). Chin. Phys. B, 2022, 31(9): 090302.
[10] Robustness of two-qubit and three-qubit states in correlated quantum channels
Zhan-Yun Wang(王展云), Feng-Lin Wu(吴风霖), Zhen-Yu Peng(彭振宇), and Si-Yuan Liu(刘思远). Chin. Phys. B, 2022, 31(7): 070302.
[11] Local sum uncertainty relations for angular momentum operators of bipartite permutation symmetric systems
I Reena, H S Karthik, J Prabhu Tej, Sudha, A R Usha Devi, and A K Rajagopal. Chin. Phys. B, 2022, 31(6): 060301.
[12] Constructing the three-qudit unextendible product bases with strong nonlocality
Bichen Che(车碧琛), Zhao Dou(窦钊), Xiubo Chen(陈秀波), Yu Yang(杨榆), Jian Li(李剑), and Yixian Yang(杨义先). Chin. Phys. B, 2022, 31(6): 060302.
[13] Self-error-rejecting multipartite entanglement purification for electron systems assisted by quantum-dot spins in optical microcavities
Yong-Ting Liu(刘永婷), Yi-Ming Wu(吴一鸣), and Fang-Fang Du(杜芳芳). Chin. Phys. B, 2022, 31(5): 050303.
[14] Experimental realization of quantum controlled teleportation of arbitrary two-qubit state via a five-qubit entangled state
Xiao-Fang Liu(刘晓芳), Dong-Fen Li(李冬芬), Yun-Dan Zheng(郑云丹), Xiao-Long Yang(杨小龙), Jie Zhou(周杰), Yu-Qiao Tan(谭玉乔), and Ming-Zhe Liu(刘明哲). Chin. Phys. B, 2022, 31(5): 050301.
[15] Protecting geometric quantum discord via partially collapsing measurements of two qubits in multiple bosonic reservoirs
Xue-Yun Bai(白雪云) and Su-Ying Zhang(张素英). Chin. Phys. B, 2022, 31(4): 040308.
No Suggested Reading articles found!