|
|
Global entanglement in ground state of {Cu3} single-molecular magnet with magnetic field |
Li Ji-Qiang (李纪强), Zhou Bin (周斌) |
Department of Physics, Hubei University, Wuhan 430062, China |
|
|
Abstract We investigate global entanglement in the ground state of single-molecular magnet Na9[Cu3Na3(H2 O)9(α -AsW9O33)2]· 26H2O with an external magnetic field. The concurrence, tangle, and measure function Q, which characterize the pairwise entanglement, 3-party entanglement and total entanglement, respectively, are calculated numerically at zero temperature. The results show that the magnitude and direction of the applied magnetic field play a significant role in the properties of three kinds of entanglement measures. We give a physical interpretation of the variation of the global entanglement with the magnetic field. Finally, the phase diagram of the global entanglement characterized by the critical magnetic fields is presented.
|
Received: 19 February 2014
Revised: 21 March 2014
Accepted manuscript online:
|
PACS:
|
03.65.Ud
|
(Entanglement and quantum nonlocality)
|
|
03.67.Mn
|
(Entanglement measures, witnesses, and other characterizations)
|
|
75.10.Jm
|
(Quantized spin models, including quantum spin frustration)
|
|
75.50.Xx
|
(Molecular magnets)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11274102), the Program for New Century Excellent Talents in Universities, China (Grant No. NCET-11-0960), and the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20134208110001). |
Corresponding Authors:
Zhou Bin
E-mail: binzhou@hubu.edu.cn
|
About author: 03.65.Ud; 03.67.Mn; 75.10.Jm; 75.50.Xx |
Cite this article:
Li Ji-Qiang (李纪强), Zhou Bin (周斌) Global entanglement in ground state of {Cu3} single-molecular magnet with magnetic field 2014 Chin. Phys. B 23 070302
|
[1] |
Karlsson A and Bourennane M 1998 Phys. Rev. A 58 4394
|
[2] |
Hao J C, Li C F and Guo G C 2001 Phys. Rev. A 63 054301
|
[3] |
Bruß D, DiVincenzo D P, Ekert A, Fuchs C A, Macchiavello C and Smolin J A 1998 Phys. Rev. A 57 2368
|
[4] |
Amico L, Fazio R, Osterloh A and Vedral V 2008 Rev. Mod. Phys. 80 517
|
[5] |
Bennett C H, Popescu S, Rohrlich D, Smolin J A and Thapliyal A V 2000 Phys. Rev. A 63 012307
|
[6] |
Coffman V, Kundu J and Wootters W K 2000 Phys. Rev. A 61 052306
|
[7] |
Meyer D A and Wallach N R 2002 J. Math. Phys. 43 4273
|
[8] |
Brennen G K 2003 Quantum Inf. Comput. 3 619
|
[9] |
Rungta P, Bužek V, Caves C M, Hillery M and Milburn G J 2001 Phys. Rev. A 64 042315
|
[10] |
Hide J, Nakata Y and Murao M 2012 Phys. Rev. A 85 042303
|
[11] |
Yu C S and Song H S 2006 Phys. Rev. A 73 022325
|
[12] |
Montakhab A and Asadian A 2010 Phys. Rev. A 82 062313
|
[13] |
Wang Y F, Cao J P and Wang Y P 2005 Chin. Phys. Lett. 22 2151
|
[14] |
Wu K D, Zhou B and Cao W Q 2007 Phys. Lett. A 362 381
|
[15] |
Chen S R, Xia Y J and Man Z X 2010 Chin. Phys. B 19 050304
|
[16] |
Ren J Z, Shao X Q, Zhang S and Yeon K H 2010 Chin. Phys. B 19 100307
|
[17] |
Pan H Z and Kuang L M 2004 Chin. Phys. Lett. 21 424
|
[18] |
Xi X Q, Hao S R, Chen W X and Yue R H 2002 Chin. Phys. Lett. 19 1044
|
[19] |
Zhang Y L and Zhou B 2011 Acta Phys. Sin. 60 120301 (in Chinese)
|
[20] |
Thomas L, Lionti F, Ballou R, Gatteschi D, Sessoli R and Barbara B 1996 Nature 383 145
|
[21] |
Wernsdorfer W and Sessoli R 1999 Science 284 133
|
[22] |
Kortz U, Nellutla S, Stowe A C, Dalal N S, Rauwald U, Danquah W and Ravot D 2004 Inorg. Chem. 43 2308
|
[23] |
Choi K Y, Matsuda Y H, Nojiri H, Kortz U, Hussain F, Stowe A C, Ramsey C and Dalal N S 2006 Phys. Rev. Lett. 96 107202
|
[24] |
Stowe A C, Nellutla S, Dalal N S and Kortz U 2004 Eur. J. Inorg. Chem. 2004 3792
|
[25] |
Choi K Y, Dalal N S, Reyes A P, Kuhns P L, Matsuda Y H, Nojiri H, Mal S S and Kortz U 2008 Phys. Rev. B 77 024406
|
[26] |
Islam M F, Nossa J F, Canali C M and Pederson M 2010 Phys. Rev. B 82 155446
|
[27] |
Bogani L and Wernsdorfer W 2008 Nat. Mater. 7 179
|
[28] |
Leuenberger M N and Loss D 2001 Nature 410 789
|
[29] |
Zhou B, Tao R B, Shen S Q and Liang J Q 2002 Phys. Rev. A 66 010301
|
[30] |
Meier F, Levy J and Loss D 2003 Phys. Rev. B 68 134417
|
[31] |
Troiani F, Ghirri A, Affronte M, Carretta S, Santini P, Amoretti G, Piligkos S, Timco G and Winpenny R E P 2005 Phys. Rev. Lett. 94 207208
|
[32] |
Lehmann J, Gaita-Ariño A, Coronado E and Loss D 2007 Nat. Nanotech. 2 312
|
[33] |
Kortz U, Al-Kassem N K, Savelieff M G, Al Kadi N A and Sadakane M 2001 Inorg. Chem. 40 4742
|
[34] |
Trif M, Troiani F, Stepanenko D and Loss D 2008 Phys. Rev. Lett. 101 217201
|
[35] |
Hou J M, Du L, Ding J Y and Zhang W X 2010 Chin. Phys. B 19 110313
|
[36] |
Li J Q, Chen Z and Zhou B 2013 Acta Phys. Sin. 62 190302 (in Chinese)
|
[37] |
Hill S and Wootters W K 1997 Phys. Rev. Lett. 78 5022
|
[38] |
Wootters W K 1998 Phys. Rev. Lett. 80 2245
|
[39] |
Endrejat J and Büttner H 2005 Phys. Rev. A 71 012305
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|