Abstract We investigate the time evolution of quantum correlations, which are measured by Gaussian quantum discord in a continuous-variable bipartite system subject to common and independent non-Markovian environments. Considering an initial two-mode Gaussian symmetric squeezed thermal state, we show that quantum correlations can be created during the non-Markovian evolution, which is different from the Markovian process. Furthermore, we find that the temperature is a key factor during the evolution in non-Markovian environments. For common reservoirs, a maximum creation of quantum correlations may occur under an appropriate temperature. For independent reservoirs, the non-Markovianity of the total system corresponds to the subsystem whose temperature is higher. In both common and independent environments, the Gaussian quantum discord is influenced by the temperature and the photon number of each mode.
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.