Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(7): 070303    DOI: 10.1088/1674-1056/23/7/070303
GENERAL Prev   Next  

Rise of quantum correlations in non-Markovian environments in continuous-variable systems

Liu Xin (刘辛), Wu Wei (吴薇)
Department of Physics, School of Science, Wuhan University of Technology, Wuhan 430070, China
Abstract  We investigate the time evolution of quantum correlations, which are measured by Gaussian quantum discord in a continuous-variable bipartite system subject to common and independent non-Markovian environments. Considering an initial two-mode Gaussian symmetric squeezed thermal state, we show that quantum correlations can be created during the non-Markovian evolution, which is different from the Markovian process. Furthermore, we find that the temperature is a key factor during the evolution in non-Markovian environments. For common reservoirs, a maximum creation of quantum correlations may occur under an appropriate temperature. For independent reservoirs, the non-Markovianity of the total system corresponds to the subsystem whose temperature is higher. In both common and independent environments, the Gaussian quantum discord is influenced by the temperature and the photon number of each mode.
Keywords:  quantum correlation      non-Markovian environment      continuous-variable systems  
Received:  30 January 2014      Revised:  23 March 2014      Accepted manuscript online: 
PACS:  03.65.Yz (Decoherence; open systems; quantum statistical methods)  
  03.65.Ta (Foundations of quantum mechanics; measurement theory)  
  03.67.Mn (Entanglement measures, witnesses, and other characterizations)  
Fund: Project supported by the Fundamental Research Funds for the Central Universities, China (Grant Nos. 2013-Ia-032 and WUT:2014-Ia-026).
Corresponding Authors:  Liu Xin     E-mail:  lxheroes@126.com
About author:  03.65.Yz; 03.65.Ta; 03.67.Mn

Cite this article: 

Liu Xin (刘辛), Wu Wei (吴薇) Rise of quantum correlations in non-Markovian environments in continuous-variable systems 2014 Chin. Phys. B 23 070303

[1] Nielsen M A and Chuang I L 2000 Quantum Computation and Quantum Information (Cambridge: Cambridge University Press)
[2] Vedral V 2003 Phys. Rev. Lett. 90 050401
[3] Yang Y and Wang A M 2013 Acta Phys. Sin. 62 130305 (in Chinese)
[4] Xie M and Qiu G B 2013 Acta Phys. Sin. 62 110303 (in Chinese)
[5] Guo L and Liang X T 2009 Acta Phys. Sin. 58 50 (in Chinese)
[6] Yang Q, Cao Z L and Yang M 2009 Chin. Phys. Lett. 26 040302
[7] Chen A X and Deng L 2007 Chin. Phys. 16 1027
[8] Yang Z B 2007 Chin. Phys. 16 329
[9] Fang M F and Cao S 2006 Chin. Phys. 15 60
[10] Ollivier H and Zurk W H 2001 Phys. Rev. Lett. 88 017901
[11] Yu T and Eberly J H 2009 Science 323 598
[12] Datta A, Shaji A and Caves C M 2008 Phys. Rev. Lett. 100 050502
[13] Dillenschneider R 2008 Phys. Rev. B 78 224413
[14] Sarandy M S 2009 Phys. Rev. A 80 022108
[15] Shabani A and Lidar D A 2009 Phys. Rev. Lett. 102 100402
[16] Datta A 2009 Phys. Rev. A 80 052304
[17] Giorda P and Paris M G A 2010 Phys. Rev. Lett. 105 020503
[18] Adesso G and Datta A 2010 Phys. Rev. Lett. 105 030501
[19] Breuer H P and Petruccione F 2007 The Theory of Open Quantum Systems (Oxford: Oxford University Press)
[20] Weiss U 2008 Quantum Dissipative System (Singapore: World Scientific)
[21] Gorini V, Kossakowski A and Sudarshan E C G 1976 J. Math. Phys. 17 821
[22] Lindblad G 1976 Commun. Math. Phys. 48 119
[23] Mazzola L, Maniscalco S, Piilo J, Suominen K A and Garraway B M 2009 Phys. Rev. A 80 012104
[24] Maniscalco S, Olivares S and Paris M G A 2007 Phys. Rev. A 75 062119
[25] Breuer H P, Laine E M and Piilo J 2009 Phys. Rev. Lett. 103 210401
[26] Wolf M M, Eisert J, Cubitt J T S and Cirac J I 2008 Phys. Rev. Lett. 101 150402
[27] Rivas A, Huelga S F and Plenio M B 2010 Phys. Rev. Lett. 105 050403
[28] Wang B, Xu Z Y, Chen Z Q and Feng M 2010 Phys. Rev. A 81 014101
[29] Fanchini F F, Werlang T, Brasil C A, Arruda L G E and Caldeira A O 2010 Phys. Rev. A 81 052107
[30] Alipour S, Mani A and Rezakhani A T 2012 Phys. Rev. A 85 052108
[31] Yun W X, Fu D B and Ping Z H 2013 Chin. Phys. B 22 040308
[32] Ning T, Tian X T and Sheng Z H 2013 Chin. Phys. B 22 030304
[33] Ping Z Y, Ning T, You W G and Sheng Z H 2011 Chin. Phys. B 20 110301
[34] Ling L Y and Fa F M 2011 Chin. Phys. B 20 100312
[35] Hua J Y and Ju J H 2010 Chin. Phys. B 19 060304
[36] Vasile R, Maniscalco S, Paris M G A, Breuer H P and Piilo J 2011 Phys. Rev. A 84 052118
[37] Takeoka M and Sasaki M 2008 Phys. Rev. A 78 022320
[38] Ferraro A, Olivares S and Paris M G A 2005 Gaussian States in Quantum Information (Napoli: Bibliopolis)
[1] Quantum steerability of two qubits mediated by one-dimensional plasmonic waveguides
Ye-Qi Zhang(张业奇), Xiao-Ting Ding(丁潇婷), Jiao Sun(孙娇), and Tian-Hu Wang(王天虎). Chin. Phys. B, 2022, 31(12): 120305.
[2] Quantum correlation and entropic uncertainty in a quantum-dot system
Ying-Yue Yang(杨颖玥), Li-Juan Li(李丽娟), Liu Ye(叶柳), and Dong Wang(王栋). Chin. Phys. B, 2022, 31(10): 100303.
[3] Effects of initial states on the quantum correlations in the generalized Grover search algorithm
Zhen-Yu Chen(陈祯羽), Tian-Hui Qiu(邱田会), Wen-Bin Zhang(张文彬), and Hong-Yang Ma(马鸿洋). Chin. Phys. B, 2021, 30(8): 080303.
[4] Quantum coherence and correlation dynamics of two-qubit system in spin bath environment
Hao Yang(杨豪), Li-Guo Qin(秦立国), Li-Jun Tian(田立君), Hong-Yang Ma(马鸿洋). Chin. Phys. B, 2020, 29(4): 040303.
[5] Quantifying non-classical correlations under thermal effects in a double cavity optomechanical system
Mohamed Amazioug, Larbi Jebli, Mostafa Nassik, Nabil Habiballah. Chin. Phys. B, 2020, 29(2): 020304.
[6] Geometrical quantum discord and negativity of two separable and mixed qubits
Tang-Kun Liu(刘堂昆), Fei Liu(刘飞), Chuan-Jia Shan(单传家), Ji-Bing Liu(刘继兵). Chin. Phys. B, 2019, 28(9): 090304.
[7] Relations between tangle and I concurrence for even n-qubit states
Xin-Wei Zha(查新未), Ning Miao(苗宁), Ke Li(李轲). Chin. Phys. B, 2019, 28(12): 120304.
[8] Monogamy quantum correlation near the quantum phase transitions in the two-dimensional XY spin systems
Meng Qin(秦猛), Zhongzhou Ren(任中洲), Xin Zhang(张欣). Chin. Phys. B, 2018, 27(6): 060301.
[9] Quantum correlations dynamics of three-qubit states coupled to an XY spin chain:Role of coupling strengths
Shao-Ying Yin(尹少英), Qing-Xin Liu(刘庆欣), Jie Song(宋杰), Xue-Xin Xu(许学新), Ke-Ya Zhou(周可雅), Shu-Tian Liu(刘树田). Chin. Phys. B, 2017, 26(10): 100501.
[10] Discord and entanglement in non-Markovian environments at finite temperatures
Hong-Mei Zou(邹红梅), Mao-Fa Fang(方卯发). Chin. Phys. B, 2016, 25(9): 090302.
[11] Population dynamics of excited atoms in non-Markovian environments at zero and finite temperature
Zou Hong-Mei (邹红梅), Fang Mao-Fa (方卯发). Chin. Phys. B, 2015, 24(8): 080304.
[12] Optimizing quantum correlation dynamics by weak measurement in dissipative environment
Du Shao-Jiang (杜少将), Xia Yun-Jie (夏云杰), Duan De-Yang (段德洋), Zhang Lu (张路), Gao Qiang (高强). Chin. Phys. B, 2015, 24(4): 044205.
[13] Dynamical decoupling pulses on the quantum correlations for the system of superconducting quantum circuit
Wang Dong-Mei (王冬梅), Qian Yi (钱懿), Xu Jing-Bo (许晶波), Yu You-Hong (俞攸红). Chin. Phys. B, 2015, 24(11): 110304.
[14] Measurement-induced disturbance in Heisenberg XY spin model with Dzialoshinskii-Moriya interaction under intrinsic decoherence
Shen Cheng-Gao (沈诚诰), Zhang Guo-Feng (张国锋), Fan Kai-Ming (樊开明), Zhu Han-Jie (朱汉杰). Chin. Phys. B, 2014, 23(5): 050310.
[15] Correlation dynamics of a qubit–qutrit system in a spin-chain environment with Dzyaloshinsky–Moriya interaction
Yang Yang (杨阳), Wang An-Min (王安民). Chin. Phys. B, 2014, 23(2): 020307.
No Suggested Reading articles found!