Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(10): 107101    DOI: 10.1088/1674-1056/22/10/107101
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Growth of monodisperse nanospheres of MnFe2O4 with enhanced magnetic and optical properties

M. Yasir Rafiquea b, Pan Li-Qing (潘礼庆)a, Qurat-ul-ain Javedb, M. Zubair Iqbalb, Qiu Hong-Mei (邱红梅)b, M. Hassan Farooqc, Guo Zhen-Gang (郭振刚)b, M. Tanveerd
a College of Science and Research Institute for New Energy, China Three Gorges University, Yichang 443002, China ;
b Department of Physics, University of Science and Technology of Beijing, Beijing 100083, China;
c School of Material Science and Engineering, University of Science and Technology of Beijing, Beijing 100083, China;
d Research Center of Materials Science, Beijing Institute of Technology, Beijing 100081, China
Abstract  Highly dispersive nanospheres of MnFe2O4 are prepared by template free hydrothermal method. The nanospheres have 47.3-nm average diameter, narrow size distribution, and good crystallinity with average crystallite size about 22 nm. The reaction temperature strongly affects the morphology, and high temperature is found to be responsible for growth of uniform nanospheres. Raman spectroscopy reveals high purity of prepared nanospheres. High saturation magnetization (78.3 emu/g), low coercivity (45 Oe, 1 Oe=79.5775 A·cm-1), low remanence (5.32 emu/g), and high anisotropy constant 2.84×104 J/m3 (10 times larger than bulk) are observed at room temperatures. The nearly superparamagnetic behavior is due to comparable size of nanospheres with superparamagnetic critical diameter Dcrspm. The high value of Keff may be due to coupling between the pinned moment in the amorphous shell and the magnetic moment in the core of the nanospheres. The nanospheres show prominent optical absorption in the visible region, and the indirect band gap is estimated to be 0.98 eV from the transmission spectrum. The prepared Mn ferrite has potential applications in biomedicine and photocatalysis.
Keywords:  Mn ferrite      magnetic materials      hydrothermal method      superparamagnetic      Raman spectroscopy  
Received:  06 February 2013      Revised:  03 April 2013      Accepted manuscript online: 
PACS:  71.10.Ay (Fermi-liquid theory and other phenomenological models)  
  75.50.-y (Studies of specific magnetic materials)  
  75.75.-c (Magnetic properties of nanostructures)  
  78.67.Bf (Nanocrystals, nanoparticles, and nanoclusters)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 50472092, 50672008, and 50971023), the Beijing Natural Science Foundation (Preparation and Magnetic Properties of Ferromagnetic Nanoring Lattice), and Research Foundation for Talented Scholars of China Three Gorges University. M. Y. Rafique was also supported by the Chancellor Scholarship of the University of Science and Technology of Beijing.
Corresponding Authors:  Pan Li-Qing     E-mail:  lpan@ctgu.edu.cn

Cite this article: 

M. Yasir Rafique, Pan Li-Qing (潘礼庆), Qurat-ul-ain Javed, M. Zubair Iqbal, Qiu Hong-Mei (邱红梅), M. Hassan Farooq, Guo Zhen-Gang (郭振刚), M. Tanveer Growth of monodisperse nanospheres of MnFe2O4 with enhanced magnetic and optical properties 2013 Chin. Phys. B 22 107101

[1] Bozorth R M, Tilden E F and Williams A J 1955 Phys. Rev. 99 1788
[2] Masrour R, Hamedoun M and Benyoussef A 2012 Chin. Phys. B 21 047501
[3] Rafique M Y, Pan L Q, Javed Q, Iqbal M Z and Yang L 2012 J. Nanopart. Res. 14 1189
[4] Yu J, Huang D Y, Yousaf M Z, Hou Y L and Gao S 2013 Chin. Phys. B 22 027506
[5] Li P, Jin C, Mi W B and Bai H L 2013 Chin. Phys. B 22 047505
[6] Zuo X, Yang A, Yoon S, Christodoulides J A, Harris V G and Vittoria C J 2005 J. Appl. Phys. 97 10
[7] Lotger F K 1964 J. Phys. Chem. Solids 25 345
[8] Takadate K, Yamamoto Y, Makino A, Yamaguchi T and Sasada I 1998 J. Appl. Phys. 83 6861
[9] Buschow K H J 1995 Handbook of Magnetic Materials, Vol. 8 (Amsterdam: Elesiver North-Holland) p. 212
[10] Adam J R, Chao L and Zhang Z J 2001 J. Phys. Chem. B 105 7967
[11] Chen J P, Sorensen C M, Klabunde K J, Hadjipanayis G C, Devlin E and Kostikas A 1996 Phys. Rev. B 54 9288
[12] Chinnasamy C N, Yang A, Yoon S D, Hsu K, Shultz M D and Carpenter E 2007 J. Appl. Phys. 101 09
[13] Toshikam T 1999 IEEE Trans. Magnet. 35 3010
[14] Aslibeiki B, Kameli P, Salamati H, Eshraghi M and Tahmasebi T 2010 J. Magn. Magn. Mater. 322 2929
[15] Chao L and John Z 2001 Chem. Mater. 13 2092
[16] Bellusci M, Aliotta C, Fiorani D, La Barbera A, Padella F, Peddis D, Pilloni M and Secci D 2012 J. Nanopart. Res. 14 904
[17] Matzen S, Moussy J B, Mattana R, Bouzehouane K, Deranlot C and Petroff F 2011 Phys. Rev. B 83 184402
[18] Sugimoto M 1999 J. Am. Ceram. Soc. 82 269
[19] Lu J, Ma S L, Sun J Y, Xia C C, Liu C, Wang Z Y, Zhao X N, Gao F B, Gong Q Y, Song B, Shuai X T, Ai H and Gu Z W 2009 Biomaterial. 30 2919
[20] Wang Y Q, Cheng R M, Wen Z and Zhao L J 2011 Eur J. Inorg. Chem. 42 2942
[21] Liu C, Zou B S, Rondinone A J and Zhang Z J 2000 J. Phys. Chem. B 104 1141
[22] Grancharov S G, Zeng H, Sun S, Wang S X, O’Brien S, Murray C B, Kirtley J R and Held G A 2005 J. Phys. Chem. B 109 13030
[23] Guo P, Zhang G, Yu J, Li H and Zhao X S 2012 Colloids, Surfaces A: Physicochem. Eng. Aspects. 395 168
[24] Seralessandri L, Bellusci M, Alvani C, La Barbera A, Padella F and Varsano F 2008 J. Solid State Chem. 181 1992
[25] Shen L F, Wang T and Wang Y 2005 Acta Phys. Sin. 54 3100 (in Chinese)
[26] Ahmed M A, Okasha N and El-Dek 2008 Nanotechnology 19 065603
[27] Balaji G, Gajbhiye N S, Wilde G and Weissmuller J 2002 J. Magn. Magn. Mater. 242 617
[28] Zheng J M, Wu X C, Zou B S and Wang Y J 1998 J. Magn. Magn. Mater. 183 152
[29] Solano E, Perez-Mirabet L, Martinez-Julian F, Guzma’n R, Arbiol J, Puig T and Obradors X 2012 J. Nanopart. Res. 14 1034
[30] Wang X H, Li X J, Yan H H, Xue L, Qu Y D and Sun G L 2008 Appl. Phys. A 90 417
[31] Popa M, Bruna P, Crespo D and Morenoz J M C 2008 J. Am. Ceram. Soc. 91 2488
[32] Yanez-Vilar S, Anchez-Andujar M S, Gomez-Aguirre C, Mira J, Senarís-Rodríguez M A and Castro-García S 2009 J. Solid State Chem. 182 2685
[33] Zhen L, He K, Xu C Y and Shao W Z 2008 J. Magn. Magn. Mater. 320 2672
[34] Wang J, Chen Q W, Hou B Y and Peng Z M 2004 Eur. J. Inorg. Chem. 2004 1165
[35] Chen G, Wang J, Zhou L, Ma W, Zhang D, Ren F, Yan H, Qiu G and Liu X 2012 J. Am. Ceram. Soc. 95 3569
[36] Xia Y, Xiong Y, Lim B and Skrabalak S E 2009 Angew. Chem. Int. Ed. 48 60
[37] Guo X Y, Du Z L, Ding P, Liang E J, Zhang H R, Liu Y Z and Liu H 2003 Acta Phys. Sin. 52 237 (in Chinese)
[38] Ayyappan S, Mahadevan S, Chandramohan P, Srinivasan M P, Philip J and Raj B 2010 J. Phys. Chem. C 114 6334
[39] Gasparov L V, Tanner D B, Romero D B, Berger H, Margaritondo G and Forro L 2000 Phys. Rev. B 62 7939
[40] Lazarevi Z Z, Jovaleki C, Recnik A, Ivanovski V N, Mitri M, Romcevi M J, Paunovi N, Ceki B D and Romcevi N Z 2011 J. Alloys Compd. 509 9977
[41] Ibusuki T, Kojima S, Kitakami O and Shimada Y 2001 IEEE Trans. Magnet. 37 2223
[42] Guimaraes A P 2009 Principle of Nanomagnetism (New York: Springer) p. 69
[43] Chikazumi S 1997 Physics of Ferromagnetism (New York: Oxford University Press) p. 506
[44] Kodama R H and Berkowitz A E 1999 Phys. Rev. B 59 6321
[45] An J, Gong C D and Lin H Q 2001 Chin. Phys. Lett. 18 419
[46] Ghosh P K, Ahmed S F, Jana S and Chattopadhyay K K 2007 Opt. Mater. 29 1584
[47] Huang J R and Cheng C 2013 J. Appl. Phys. 113 033912
[1] Polarization Raman spectra of graphene nanoribbons
Wangwei Xu(许望伟), Shijie Sun(孙诗杰), Muzi Yang(杨慕紫), Zhenliang Hao(郝振亮), Lei Gao(高蕾), Jianchen Lu(卢建臣), Jiasen Zhu(朱嘉森), Jian Chen(陈建), and Jinming Cai(蔡金明). Chin. Phys. B, 2023, 32(4): 046803.
[2] In situ study of calcite-III dimorphism using dynamic diamond anvil cell
Xia Zhao(赵霞), Sheng-Hua Mei(梅升华), Zhi Zheng(郑直), Yue Gao(高悦), Jiang-Zhi Chen(陈姜智), Yue-Gao Liu(刘月高), Jian-Guo Sun(孙建国), Yan Li(李艳), and Jian-Hui Sun(孙建辉). Chin. Phys. B, 2022, 31(9): 096201.
[3] Radiation effects of electrons on multilayer FePS3 studied with laser plasma accelerator
Meng Peng(彭猛), Jun-Bo Yang(杨俊波), Hao Chen(陈浩), Bo-Yuan Li(李博源), Xu-Lei Ge(葛绪雷), Xiao-Hu Yang(杨晓虎), Guo-Bo Zhang(张国博), and Yan-Yun Ma(马燕云). Chin. Phys. B, 2022, 31(8): 086102.
[4] Magnetic van der Waals materials: Synthesis, structure, magnetism, and their potential applications
Zhongchong Lin(林中冲), Yuxuan Peng(彭宇轩), Baochun Wu(吴葆春), Changsheng Wang(王常生), Zhaochu Luo(罗昭初), and Jinbo Yang(杨金波). Chin. Phys. B, 2022, 31(8): 087506.
[5] SERS activity of carbon nanotubes modified by silver nanoparticles with different particle sizes
Xiao-Lei Zhang(张晓蕾), Jie Zhang(张洁), Yuan Luo(罗元), and Jia Ran(冉佳). Chin. Phys. B, 2022, 31(7): 077401.
[6] Structural evolution and bandgap modulation of layered β-GeSe2 single crystal under high pressure
Hengli Xie(谢恒立), Jiaxiang Wang(王家祥), Lingrui Wang(王玲瑞), Yong Yan(闫勇), Juan Guo(郭娟), Qilong Gao(高其龙), Mingju Chao(晁明举), Erjun Liang(梁二军), and Xiao Ren(任霄). Chin. Phys. B, 2022, 31(7): 076101.
[7] Photothermal-chemical synthesis of P-S-H ternary hydride at high pressures
Tingting Ye(叶婷婷), Hong Zeng(曾鸿), Peng Cheng(程鹏), Deyuan Yao(姚德元), Xiaomei Pan(潘孝美), Xiao Zhang(张晓), and Junfeng Ding(丁俊峰). Chin. Phys. B, 2022, 31(6): 067402.
[8] Raman spectroscopy investigation on the pressure-induced structural and magnetic phase transition in two-dimensional antiferromagnet FePS3
Hong Zeng(曾鸿), Tingting Ye(叶婷婷), Peng Cheng(程鹏), Deyuan Yao(姚德元), and Junfeng Ding(丁俊峰). Chin. Phys. B, 2022, 31(5): 056109.
[9] Formation of L10-FeNi hard magnetic material from FeNi-based amorphous alloys
Yaocen Wang(汪姚岑), Ziyan Hao(郝梓焱), Yan Zhang(张岩), Xiaoyu Liang(梁晓宇), Xiaojun Bai(白晓军), and Chongde Cao(曹崇德). Chin. Phys. B, 2022, 31(4): 046301.
[10] Raman spectroscopy of isolated carbyne chains confined in carbon nanotubes: Progress and prospects
Johannes M. A. Lechner, Pablo Hernández López, and Sebastian Heeg. Chin. Phys. B, 2022, 31(12): 127801.
[11] Observation of large in-plane anisotropic transport in van der Waals semiconductor Nb2SiTe4
Kaiyao Zhou(周楷尧), Jun Deng(邓俊), Long Chen(陈龙), Wei Xia(夏威), Yanfeng Guo(郭艳峰), Yang Yang(杨洋), Jian-Gang Guo(郭建刚), and Liwei Guo(郭丽伟). Chin. Phys. B, 2021, 30(8): 087202.
[12] Effects of W6+ occupying Sc3+ on the structure, vibration, and thermal expansion properties of scandium tungstate
Dongxia Chen(陈冬霞), Qiang Sun(孙强), Zhanjun Yu(于占军), Mingyu Li(李明玉), Juan Guo(郭娟), Mingju Chao(晁明举), and Erjun Liang(梁二军). Chin. Phys. B, 2021, 30(6): 066501.
[13] Adsorption of CO2 on MgAl layered double hydroxides: Effect of intercalated anion and alkaline etching time
Yan-Yan Feng(冯艳艳), Xiao-Di Niu(牛潇迪), Yong-Hui Xu (徐永辉), and Wen Yang(杨文). Chin. Phys. B, 2021, 30(4): 048101.
[14] Raman investigation of hydration structure of iodide and iodate
Zhe Liu(刘喆), Hong-Liang Zhao(赵洪亮), Hong-Zhi Lang(郎鸿志), Ying Wang(王莹), Zhan-Long Li(李占龙), Zhi-Wei Men(门志伟), Sheng-Han Wang(汪胜晗), and Cheng-Lin Sun(孙成林). Chin. Phys. B, 2021, 30(4): 043301.
[15] Synthesis of ternary compound in H-S-Se system at high pressures
Xiao Zhang(张晓). Chin. Phys. B, 2021, 30(12): 127801.
No Suggested Reading articles found!