Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(9): 094207    DOI: 10.1088/1674-1056/22/9/094207
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Spontaneous emission of two quantum dots in a single-mode cavity

Qiu Liu (邱柳), Zhang Ke (张珂), Li Zhi-Yuan (李志远)
Laboratory of Optical Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
Abstract  The spontaneous emission spectrum from two quantum dots (QDs) that are strongly coupled with a single-mode nanocavity is investigated using rigorous numerical calculations and simple analytical solutions of quantum dynamics. The emission spectra both from the side and along the axis of the cavity are considered. Modification of two parameters, the coupling strength and the detuning between the transition frequencies of the two quantum dots, allows us to efficiently control the shape of the spontaneous emission spectrum. Different profiles and their physical origins can be well understood in the dressed-state picture for the light-QD interaction in the on-resonance and off-resonance situations. In the on-resonance situation, the emission spectra exhibit symmetric features, and they are not altered by the asymmetry in the coupling parameters. The axis spectra show two emission peaks while the side spectra have three emission peaks. In the off-resonance situation, the emission spectra always show an asymmetrical three-peak feature. When the two QDs have different decay parameters, singular features (a peak or a dip) can take place at the frequency of the cavity mode, and this is attributed to the unbalanced process of the emission and absorption of a single photon.
Keywords:  spontaneous emission      quantum dot      single-mode cavity  
Received:  01 March 2013      Revised:  02 April 2013      Accepted manuscript online: 
PACS:  42.50.Pq (Cavity quantum electrodynamics; micromasers)  
  03.65.Yz (Decoherence; open systems; quantum statistical methods)  
  78.67.Hc (Quantum dots)  
Fund: Project supported by the National Basic Research Foundation of China (Grant No. 2011CB922002).
Corresponding Authors:  Li Zhi-Yuan     E-mail:  lizy@aphy.iphy.ac.cn

Cite this article: 

Qiu Liu (邱柳), Zhang Ke (张珂), Li Zhi-Yuan (李志远) Spontaneous emission of two quantum dots in a single-mode cavity 2013 Chin. Phys. B 22 094207

[1] Carmichael H J 1999 Statistical Methods in Quantum Optics (vol. 1, 2) (Berlin: Springer)
[2] Boozer A D, Boca A, Miller R, Northup T E and Kimble H J 2007 Phys. Rev. Lett. 98 193601
[3] Shen J T and Fan S H 2009 Phys. Rev. A 79 023837
[4] Vahala K J 2003 Nature 424 839
[5] Fidio C D and Vogel W 2009 Phys. Rev. A 79 050303
[6] Song B S, Noda S, Asano T and Akahane Y 2005 Nature Mater. 4 207
[7] Hennessy K, Badolato A, Winger M, Gerace D, Atature M, Gulde S, Falt S, Hu E L and Imamoglu A 2007 Nature 445 896
[8] Nomura M, Kumagai N, Iwamoto S, Ota Y and Arakawa Y 2010 Nature Phys. 6 279
[9] Li Z Y, Lin L L and Zhang Z Q 2000 Phys. Rev. Lett. 84 4341
[10] Li Z Y and Xia Y N 2001 Phys. Rev. A 63 043817
[11] Kouwenhoven L, Austing D G and Tarucha S 2001 Rep. Prog. Phys. 64 701
[12] Mizubayashi J, Haruyama J, Takesue I, T Okazaki, Shinohara H, Harada Y and Awano Y 2008 Microelectron. J. 39 222
[13] Garnier A A, Simon C, Gérard J M and Poizat J P 2007 Phys. Rev. A 75 053823
[14] Gerace D, Türeci H E, Imamoglu A, Giovannetti V and Fazio R 2009 Nature Phys. 5 281
[15] McKeever J, Boca A, Boozer A D, Buck J R and Kimble H J 2003 Nature 425 268
[16] Painter O, Lee R K, Scherer A, Yariv A, O’Brien J D, Dapkus P D and Kim I 1999 Science 284 1819
[17] Florescu L, John S, Quang T and Wang R Z 2004 Phy. Rev. A 69 013816
[18] Cui G Q and Raymer M G 2006 Phys. Rev. A 73 053807
[19] Hughes S and Yao P 2009 Opt. Express 17 3322
[20] Gevaux D G, Bennett A J, Stevenson R M, Shields A J, Atkinson P, Griffiths J, Anderson D, Jones G A C and Ritchie D A 2006 Appl. Rev. Lett. 88 131101
[21] Naesby A, Suhr T, Kristensen P T and Mork J 2008 Phys. Rev. A 78 045802
[22] Auffeves A, Gerard J M and Poizat J P 2009 Phys. Rev. A 79 053838
[23] Di Z, Jones H V, Dolan P R, Fairclough S M, Wincott M B, Fill J, Hughes G M and Smith J M 2012 New J. Phys. 14 103048
[24] Midolo L, Pagliano F, Hoang T B, Xia T, van Otten F W M, Li L H, Linfield E H, Lermer M, Hofling S and Fiore A 2012 Appl. Phys. Lett. 101 091106
[25] Gan Z S, Jia B H, Liu J F, Wang X H and Gu M 2012 Appl. Phys. Lett. 101 071109
[26] Rao V S C M and Hughes S 2007 Phys. Rev. Lett. 99 193901
[27] Laucht A, Gunthner T, Putz S, Saive R, Frederick S, Hauke N, Bichler M, Amann M C, Holleitner A W, Kaniber M and Finley J J 2012 J. Appl. Phys. 112 093520
[28] Hughes S and Kamada H 2004 Phys. Rev. B 70 195313
[29] Wu J, Lü X Q, Jin P, Meng X Q and Wang Z G 2011 Chin. Phys. B 20 064202
[30] Wang X G, Feng M and Sanders B C 2003 Phy. Rev. A 67 022302
[31] Zhang K and Li Z Y 2010 Phys. Rev. A 81 033843
[32] Mckeever J, Buck J R, Boozer A D and Kimble H J 2004 Phys. Rev. Lett. 93 143601
[33] Li G X, Tan H T, Wu S P and Yang Y P 2004 Phys. Rev. A 70 034307
[34] Laussy F P, del Valle E and Tejedor C 2009 Phys. Rev. B 79 235325
[35] Laucht A, Villas-Bôas J M, Stobbe S, Hauke N, Hofbauer F, Böhm G, Lodahl P, Amann M C, Kaniber M and Finley J J 2010 Phys. Rev. B 82 075305
[36] Wang X X, Zhang J Q, Yu Y F and Zhang Z M 2011 Chin. Phys. B 20 110306
[37] Yu T, Zhu A D and Zhang S 2012 Chin. Phys. B 21 050304
[1] Adaptive genetic algorithm-based design of gamma-graphyne nanoribbon incorporating diamond-shaped segment with high thermoelectric conversion efficiency
Jingyuan Lu(陆静远), Chunfeng Cui(崔春凤), Tao Ouyang(欧阳滔), Jin Li(李金), Chaoyu He(何朝宇), Chao Tang(唐超), and Jianxin Zhong(钟建新). Chin. Phys. B, 2023, 32(4): 048401.
[2] Electron beam pumping improves the conversion efficiency of low-frequency photons radiated by perovskite quantum dots
Peng Du(杜鹏), Yining Mu(母一宁), Hang Ren(任航), Idelfonso Tafur Monroy, Yan-Zheng Li(李彦正), Hai-Bo Fan(樊海波), Shuai Wang(王帅), Makram Ibrahim, and Dong Liang(梁栋). Chin. Phys. B, 2023, 32(4): 048704.
[3] Impact of amplified spontaneous emission noise on the SRS threshold of high-power fiber amplifiers
Wei Liu(刘伟), Shuai Ren(任帅), Pengfei Ma(马鹏飞), and Pu Zhou(周朴). Chin. Phys. B, 2023, 32(3): 034202.
[4] High-fidelity universal quantum gates for hybrid systems via the practical photon scattering
Jun-Wen Luo(罗竣文) and Guan-Yu Wang(王冠玉). Chin. Phys. B, 2023, 32(3): 030303.
[5] Electrical manipulation of a hole ‘spin’-orbit qubit in nanowire quantum dot: The nontrivial magnetic field effects
Rui Li(李睿) and Hang Zhang(张航). Chin. Phys. B, 2023, 32(3): 030308.
[6] Thermoelectric signature of Majorana zero modes in a T-typed double-quantum-dot structure
Cong Wang(王聪) and Xiao-Qi Wang(王晓琦). Chin. Phys. B, 2023, 32(3): 037304.
[7] Spontaneous emission of a moving atom in a waveguide of rectangular cross section
Jing Zeng(曾静), Jing Lu(卢竞), and Lan Zhou(周兰). Chin. Phys. B, 2023, 32(2): 020302.
[8] Ion migration in metal halide perovskite QLEDs and its inhibition
Yuhui Dong(董宇辉), Danni Yan(严丹妮), Shuai Yang(杨帅), Naiwei Wei(魏乃炜),Yousheng Zou(邹友生), and Haibo Zeng(曾海波). Chin. Phys. B, 2023, 32(1): 018507.
[9] Nonlinear optical rectification of GaAs/Ga1-xAlxAs quantum dots with Hulthén plus Hellmann confining potential
Yi-Ming Duan(段一名) and Xue-Chao Li(李学超). Chin. Phys. B, 2023, 32(1): 017303.
[10] Large Seebeck coefficient resulting from chiral interactions in triangular triple quantum dots
Yi-Ming Liu(刘一铭) and Jian-Hua Wei(魏建华). Chin. Phys. B, 2022, 31(9): 097201.
[11] Dynamic transport characteristics of side-coupled double-quantum-impurity systems
Yi-Jie Wang(王一杰) and Jian-Hua Wei(魏建华). Chin. Phys. B, 2022, 31(9): 097305.
[12] Steering quantum nonlocalities of quantum dot system suffering from decoherence
Huan Yang(杨欢), Ling-Ling Xing(邢玲玲), Zhi-Yong Ding(丁智勇), Gang Zhang(张刚), and Liu Ye(叶柳). Chin. Phys. B, 2022, 31(9): 090302.
[13] High-quality CdS quantum dots sensitized ZnO nanotube array films for superior photoelectrochemical performance
Qian-Qian Gong(宫倩倩), Yun-Long Zhao(赵云龙), Qi Zhang(张奇), Chun-Yong Hu(胡春永), Teng-Fei Liu(刘腾飞), Hai-Feng Zhang(张海峰), Guang-Chao Yin(尹广超), and Mei-Ling Sun(孙美玲). Chin. Phys. B, 2022, 31(9): 098103.
[14] Loss prediction of three-level amplified spontaneous emission sources in radiation environment
Shen Tan(谭深), Yan Li(李彦), Hao-Shi Zhang(张浩石), Xiao-Wei Wang(王晓伟), and Jing Jin(金靖). Chin. Phys. B, 2022, 31(6): 064211.
[15] Modeling and numerical simulation of electrical and optical characteristics of a quantum dot light-emitting diode based on the hopping mobility model: Influence of quantum dot concentration
Pezhman Sheykholeslami-Nasab, Mahdi Davoudi-Darareh, and Mohammad Hassan Yousefi. Chin. Phys. B, 2022, 31(6): 068504.
No Suggested Reading articles found!