Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(12): 127104    DOI: 10.1088/1674-1056/21/12/127104
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Electronic structures and optical properties of Zn-doped β-Ga2O3 with different doping sites

Li Chao (李超), Yan Jin-Liang (闫金良), Zhang Li-Ying (张丽英), Zhao Gang (赵刚)
School of Physics and Optoelectronic Engineering, Ludong University, Yantai 264025, China
Abstract  The electronic structures and optical properties of intrinsic β-Ga2O3 and Zn-doped β-Ga2O3 are investigated by first-principles calculations. The analysis about the thermal stability shows that Zn-doped β-Ga2O3 remains stable. The Zn doping does not change the basic electronic structure of β-Ga2O3, but only generates an empty energy level above the maximum of valence band, which is shallow enough to make the Zn-doped β-Ga2O3 a typical p-type semiconductor. Because of Zn doping, absorption and reflectivity are enhanced in the near infrared region. The higher absorption and reflectivity of ZnGa(2) than those of ZnGa(1) are due to more empty energy states of ZnGa(2) than those of ZnGa(1) near Ef in the near infrared region.
Keywords:  first-principles      Zn-doped β-Ga2O3      p-type semiconductor      optical properties  
Received:  06 April 2012      Revised:  22 May 2012      Accepted manuscript online: 
PACS:  71.20.-b (Electron density of states and band structure of crystalline solids)  
  71.15.Dx (Computational methodology (Brillouin zone sampling, iterative diagonalization, pseudopotential construction))  
  71.55.-i (Impurity and defect levels)  
  71.55.Eq (III-V semiconductors)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 10974077), the Natural Science Foundation of Shandong Province, China (Grant No. 2009ZRB01702), and the Shandong Provincial Higher Educational Science and Technology Program, China (Grant No. J10LA08).
Corresponding Authors:  Yan Jin-Liang     E-mail:  yanjinliang@yahoo.cn

Cite this article: 

Li Chao (李超), Yan Jin-Liang (闫金良), Zhang Li-Ying (张丽英), Zhao Gang (赵刚) Electronic structures and optical properties of Zn-doped β-Ga2O3 with different doping sites 2012 Chin. Phys. B 21 127104

[1] Wang G T, Xue C S and Yang Z Z 2008 Chin. Phys. B 17 1326
[2] Varley J B, Weber J R, Janotti A and van de Walle C G 2010 Appl. Phys. Lett. 97 142106
[3] Ma H L, Fan D W and Niu X S 2010 Chin. Phys. B 19 076102
[4] Chang S H, Chen Z Z, Huang W, Liu X C, Chen B Y, Li Z Z and Shi E W 2011 Chin. Phys. B 20 116101
[5] Passlacki M, Hong M and Mannaerts J P 1996 Appl. Phys. Lett. 68 1099
[6] Li Y, Trinchi A, Wlodarski W, Galatsis K and Kalantar Z K 2003 Sens. Actuators B 93 431
[7] Medvedeva J E and Chaminda L H 2010 Phys. Rev. B 81 125116
[8] Liu L L, Li M K Yu D Q, Zhang J, Zhang H, Qian C and Yang Z 2010 Appl. Phys. A 98 831
[9] Zhang L Y, Yan J L, Zhang Y J and Li T 2012 Chin. Phys. B 21 067102
[10] Zhang L Y, Yan J L, Zhang Y J, Li T and Ding X W 2012 Physica B 407 1227
[11] Chang P C, Fan Z Y, Tseng W Y, Rajagopal A and Lu J G 2005 Appl. Phys. Lett. 87 222102
[12] Segall M D, Lindan P J D, Probert M J, Pickard C J, Hasnip P J, Clark S J and Payne M C 2002 J. Phys.: Condens. Matter 14 2717
[13] Zhu F, Dong S and Cheng G 2011 Chin. Phys. B 20 077103
[14] Ouyang C Y, Xiong Z H, Ouyang Q Z, Liu G D, Ye Z Q and Lei M S 2006 Chin. Phys. 15 1585
[15] Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188
[16] Ahman J, Svensson G and Albertsson J 1996 Acta Crystallogr. C 52 1336
[17] Orita M, Ohta H and Hirano M 2000 Appl. Phys. Lett. 77 25
[18] Fischer T H and Almlof J 1992 J. Phys. Chem. 96 9768
[19] Yoshioka S, Hayashi H, Kuwabara A, Matsunaga K and Tanaka I 2007 J. Phys.: Condens. Matter 19 346211
[20] Feng J, Xiao B, Chen J C and Zhou C J 2009 Solid State Sci. 11 259
[21] Singh A K, Janotti A, Scheffler M and van de Walle C G 2008 Phys. Rev. Lett. 101 055502
[22] Geller S 1960 J. Chem. Phys. 33 676
[23] Feng J, Xiao B, Chen J, Du Y, Yu J and Zhou R 2011 Materials and Design 32 3231
[24] Litimeina F, Racheda D, Khenatab R and Baltacheb H 2009 J. Alloys Compd. 9 20516
[25] He H, Blanco M A and Pandey R 2006 Appl. Phys. Lett. 88 261904
[26] Medvedeva J E, Teasley E N and Hoffman M D 2007 Phys. Rev. B 76 155107
[27] Sheetz R M, Ponomareva I, Richter E, Andriotis A N and Menon M 2009 Phys. Rev. B 80 195314
[28] MacDonald W M 1955 Phys. Rev. 98 60
[1] Effects of phonon bandgap on phonon-phonon scattering in ultrahigh thermal conductivity θ-phase TaN
Chao Wu(吴超), Chenhan Liu(刘晨晗). Chin. Phys. B, 2023, 32(4): 046502.
[2] First-principles study of the bandgap renormalization and optical property of β-LiGaO2
Dangqi Fang(方党旗). Chin. Phys. B, 2023, 32(4): 047101.
[3] Rational design of Fe/Co-based diatomic catalysts for Li-S batteries by first-principles calculations
Xiaoya Zhang(张晓雅), Yingjie Cheng(程莹洁), Chunyu Zhao(赵春宇), Jingwan Gao(高敬莞), Dongxiao Kan(阚东晓), Yizhan Wang(王义展), Duo Qi(齐舵), and Yingjin Wei(魏英进). Chin. Phys. B, 2023, 32(3): 036803.
[4] Single-layer intrinsic 2H-phase LuX2 (X = Cl, Br, I) with large valley polarization and anomalous valley Hall effect
Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), Yuan-Shuo Liu(刘元硕), Shuai Fu(傅帅),Xiao-Ning Cui(崔晓宁), Yi-Hao Wang(王易昊), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(3): 037306.
[5] Li2NiSe2: A new-type intrinsic two-dimensional ferromagnetic semiconductor above 200 K
Li-Man Xiao(肖丽蔓), Huan-Cheng Yang(杨焕成), and Zhong-Yi Lu(卢仲毅). Chin. Phys. B, 2023, 32(3): 037501.
[6] Prediction of one-dimensional CrN nanostructure as a promising ferromagnetic half-metal
Wenyu Xiang(相文雨), Yaping Wang(王亚萍), Weixiao Ji(纪维霄), Wenjie Hou(侯文杰),Shengshi Li(李胜世), and Peiji Wang(王培吉). Chin. Phys. B, 2023, 32(3): 037103.
[7] First-principles prediction of quantum anomalous Hall effect in two-dimensional Co2Te lattice
Yuan-Shuo Liu(刘元硕), Hao Sun(孙浩), Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(2): 027101.
[8] Optical and electrical properties of BaSnO3 and In2O3 mixed transparent conductive films deposited by filtered cathodic vacuum arc technique at room temperature
Jian-Ke Yao(姚建可) and Wen-Sen Zhong(钟文森). Chin. Phys. B, 2023, 32(1): 018101.
[9] First-principles study on β-GeS monolayer as high performance electrode material for alkali metal ion batteries
Meiqian Wan(万美茜), Zhongyong Zhang(张忠勇), Shangquan Zhao(赵尚泉), and Naigen Zhou(周耐根). Chin. Phys. B, 2022, 31(9): 096301.
[10] Effects of oxygen concentration and irradiation defects on the oxidation corrosion of body-centered-cubic iron surfaces: A first-principles study
Zhiqiang Ye(叶志强), Yawei Lei(雷亚威), Jingdan Zhang(张静丹), Yange Zhang(张艳革), Xiangyan Li(李祥艳), Yichun Xu(许依春), Xuebang Wu(吴学邦), C. S. Liu(刘长松), Ting Hao(郝汀), and Zhiguang Wang(王志光). Chin. Phys. B, 2022, 31(8): 086802.
[11] Machine learning potential aided structure search for low-lying candidates of Au clusters
Tonghe Ying(应通和), Jianbao Zhu(朱健保), and Wenguang Zhu(朱文光). Chin. Phys. B, 2022, 31(7): 078402.
[12] Bandgap evolution of Mg3N2 under pressure: Experimental and theoretical studies
Gang Wu(吴刚), Lu Wang(王璐), Kuo Bao(包括), Xianli Li(李贤丽), Sheng Wang(王升), and Chunhong Xu(徐春红). Chin. Phys. B, 2022, 31(6): 066205.
[13] Alloying and magnetic disordering effects on phase stability of Co2 YGa (Y=Cr, V, and Ni) alloys: A first-principles study
Chun-Mei Li(李春梅), Shun-Jie Yang(杨顺杰), and Jin-Ping Zhou(周金萍). Chin. Phys. B, 2022, 31(5): 056105.
[14] First-principles calculations of the hole-induced depassivation of SiO2/Si interface defects
Zhuo-Cheng Hong(洪卓呈), Pei Yao(姚佩), Yang Liu(刘杨), and Xu Zuo(左旭). Chin. Phys. B, 2022, 31(5): 057101.
[15] Evaluation of performance of machine learning methods in mining structure—property data of halide perovskite materials
Ruoting Zhao(赵若廷), Bangyu Xing(邢邦昱), Huimin Mu(穆慧敏), Yuhao Fu(付钰豪), and Lijun Zhang(张立军). Chin. Phys. B, 2022, 31(5): 056302.
No Suggested Reading articles found!