Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(11): 117801    DOI: 10.1088/1674-1056/21/11/117801
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Metamaterial absorbers realized in X-band rectangular waveguide

Huang Yong-Jun (黄勇军)a, Wen Guang-Jun (文光俊)a, Li Jian (李建)a, Zhong Jing-Ping (钟靖平)a, Wang Ping (王平)a, Sun Yuan-Hua (孙元华)a, O. Gordona, Zhu Wei-Ren (朱卫仁 )b
a Key Laboratory of Broadband Optical Fiber Transmission & Communication Networks, School of Communication and Information Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China;
b Advanced Computing and Simulation Laboratory (AχL), Department of Electrical and Computer Systems Engineering, Monash University, Clayton, Victoria 3800, Australia
Abstract  In this paper, we demonstrate six types of metamaterial absorbers (MMAs) by measuring their absorptivities in an X-band (8-12 GHz) rectangular waveguide. Some of the MMAs have been demonstrated previously by using the free space measurement method, and the others are proposed firstly in this paper. The measured results show that all of the six MMAs exhibit high absorptivities above 98%, which have the similar absorbing characteristics comparing to those measured in the free space. The numerically obtained surface current densities for each MMA show that the absorbing mechanism is the same as that under the free space condition. Such a demonstration method is superior to the conventional free space measurement method due to the small-scale test samples required, the simple measure device, and the low cost. Most importantly, the proposed method opens a way to make the MMAs used in microwave applications such as the matched terminations.
Keywords:  metamaterial      absorber      electric resonator      rectangular waveguide  
Received:  09 March 2012      Revised:  09 May 2012      Accepted manuscript online: 
PACS:  78.20.Ci (Optical constants (including refractive index, complex dielectric constant, absorption, reflection and transmission coefficients, emissivity))  
  41.20.Jb (Electromagnetic wave propagation; radiowave propagation)  
  42.25.Bs (Wave propagation, transmission and absorption)  
Fund: Project supported by the Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20110185110014) and the Fundamental Research Funds for the Central Universities, China (Grant No. E022050205).
Corresponding Authors:  Huang Yong-Jun     E-mail:  yongjunh@uestc.edu.cn

Cite this article: 

Huang Yong-Jun (黄勇军), Wen Guang-Jun (文光俊), Li Jian (李建), Zhong Jing-Ping (钟靖平), Wang Ping (王平), Sun Yuan-Hua (孙元华), O. Gordon, Zhu Wei-Ren (朱卫仁 ) Metamaterial absorbers realized in X-band rectangular waveguide 2012 Chin. Phys. B 21 117801

[1] Smith D R, Padilla W J, Vier D C, Nemat-Nasser S C and Schultz S 2000 Phys. Rev. Lett. 84 4184
[2] Shelby R A, Smith D R and Schultz S 2001 Science 292 77
[3] Huang Y J, Wen G J, Li T Q and Xie K 2010 Appl. Compu. Electrom. Soc. J. 25 696
[4] Huang Y J, Wen G J, Li T Q, Li L W and Xie K 2012 IEEE Antennas and Wireless Propagation Letters 11 264
[5] Huang Y J, Wen G J, Yang Y J and Xie K 2012 Appl. Phys. A 106 79
[6] Yang Y M, Wang J F, Xia S, Bai P, Li Z, Wang J, Xu Z and Qu S B 2011 Chin. Phys. B 20 014101
[7] Fan J, Sun G Y and Zhu W R 2011 Chin. Phys. B 20 114101
[8] Zhou Q L, Shi Y L, Wang A H, Li L and Zhang C L 2012 Chin. Phys. B 21 058701
[9] Tang M C, Xiao S Q, Guang J, Bai Y Y, Gao S S and Wang B Z 2010 Chin. Phys. B 19 074214
[10] Ma H, Qu S B, Xu Z, Zhang J Q and Wang J H 2009 Chin. Phys. B 18 1025
[11] Landy N I, Sajuyigbe S, Mock J J, Smith D R and Padilla W J 2008 Phys. Rev. Lett. 100 207402
[12] Maier T and Brueckl H 2010 Opt. Lett. 35 3766
[13] Zhu W R and Zhao X P 2010 Eur. Phys. J. Appl. Phys. 50 21101
[14] Hu C G, Li X, Feng Q, Chen X N and Luo X G 2010 Opt. Express 18 6598
[15] Alici K B, Bilotti F, Vegni L and Ozbay E 2010 J. Appl. Phys. 108 083113
[16] Cheng Y and Yang H 2010 J. Appl. Phys. 108 034906
[17] Cheng Y, Yang H, Cheng Z and Wu N 2011 Appl. Phys. A 102 99
[18] Gu C, Qu S B, Pei Z B and Xu Z 2011 Chin. Phys. B 20 037801
[19] Xu Y Q, Zhou P H, Zhang H B, Chen L and Deng L J 2011 J. Appl. Phys. 110 044102
[20] Tao H, Landy N I, Bingham C M, Zhang X, Averitt R D and Padilla W J 2008 Opt. Express 16 7181
[21] Tao H, Bingham C M, Strikwerda A C, Pilon D, Shrekenhamer D, Landy N I, Fan K, Zhang X, Padilla W J and Averitt R D 2008 Phys. Rev. B 78 241103
[22] Landy N I, Bingham C M, Tyler T, Jokerst N, Smith D R and Padilla W J 2009 Phys. Rev. B 79 125104
[23] Grant J, Ma Y, Saha S, Lok L B, Khalid A and Cumming D R S 2011 Opt. Lett. 36 1524
[24] Zhu W and Zhao X 2009 J. Opt. Soc. Am. B 26 2382
[25] Zhu W, Zhao X, Gong B, Liu L and Su B 2011 Appl. Phys. A 102 147
[26] Gong Y, Li Z, Fu J, Chen Y, Wang G, Lu H, Wang L and Liu X 2011 Opt. Express 19 10193
[27] Wen Q Y, Zhang H W, Xie Y S, Yang Q H and Liu Y L 2009 Appl. Phys. Lett. 95 241111
[28] Tao H, Bingham C M, Pilon D, Fan K, Strikwerda A C, Shrekenhamer D, Padilla W J, Zhang X and Averitt R D 2010 J. Phys. D: Appl. Phys. 43 225102
[29] Ma Y, Chen Q, Grant J, Saha S C, Khalid A and Cumming D R S 2011 Opt. Lett. 36 945
[30] Luo H, Cheng Y Z and Gong R Z 2011 Eur. Phys. J. B 81 387
[31] Li H, Yuan L H, Zhou B, Shen X P, Cheng Q and Cui T J 2011 J. Appl. Phys. 110 014909
[32] Shen X P, Cui T J, Zhao J M, Ma H F, Jiang W X and Li H 2011 Opt. Express 19 9401
[33] Gu C, Qu S B, Pei Z B, Xu Z, Liu J and Gu W 2011 Chin. Phys. B 20 017801
[34] Sun J B, Liu L Y, Dong G Y and Zhou J 2011 Opt. Express 19 21155
[35] Ding F, Cui Y X, Ge X C, Jin Y and He S L 2012 Appl. Phys. Lett. 100 103506
[36] Liu Y H, Gu S, Luo C R and Zhao X P 2012 Appl. Phys. A 108 19
[37] Yang Y J, Huang Y J, Wen G J, Zhong J P, Sun H B and Gordon O 2012 Chin. Phys. B 21 038501
[38] Zhu W R, Huang Y J, Rukhlenko I D, Wen G J and Premaratne M 2012 Opt. Express 20 6616
[39] Li L, Yang Y and Liang C 2011 J. Appl. Phys. 110 063702
[40] Padilla W J, Aronsson M T, Highstrete C, Lee M A, Taylor J and Averitt R D Phys. Rev. B 75 041102
[1] Bidirectional visible light absorber based on nanodisk arrays
Qi Wang(王琦), Fei-Fan Zhu(朱非凡), Rui Li(李瑞), Shi-Jie Zhang(张世杰), and Da-Wei Zhang(张大伟). Chin. Phys. B, 2023, 32(3): 030205.
[2] A three-band perfect absorber based on a parallelogram metamaterial slab with monolayer MoS2
Wen-Jing Zhang(张雯婧), Qing-Song Liu(刘青松), Bo Cheng(程波), Ming-Hao Chao(晁明豪),Yun Xu(徐云), and Guo-Feng Song(宋国峰). Chin. Phys. B, 2023, 32(3): 034211.
[3] Generation of a blue-detuned optical storage ring by a metasurface and its application in optical trapping of cold molecules
Chen Ling(凌晨), Yaling Yin(尹亚玲), Yang Liu(刘泱), Lin Li(李林), and Yong Xia(夏勇). Chin. Phys. B, 2023, 32(2): 023301.
[4] Dual-function terahertz metasurface based on vanadium dioxide and graphene
Jiu-Sheng Li(李九生) and Zhe-Wen Li(黎哲文). Chin. Phys. B, 2022, 31(9): 094201.
[5] Hydrodynamic metamaterials for flow manipulation: Functions and prospects
Bin Wang(王斌) and Jiping Huang (黄吉平). Chin. Phys. B, 2022, 31(9): 098101.
[6] Controlling acoustic orbital angular momentum with artificial structures: From physics to application
Wei Wang(王未), Jingjing Liu(刘京京), Bin Liang (梁彬), and Jianchun Cheng(程建春). Chin. Phys. B, 2022, 31(9): 094302.
[7] Broadband low-frequency acoustic absorber based on metaporous composite
Jia-Hao Xu(徐家豪), Xing-Feng Zhu(朱兴凤), Di-Chao Chen(陈帝超), Qi Wei(魏琦), and Da-Jian Wu(吴大建). Chin. Phys. B, 2022, 31(6): 064301.
[8] Plasmon-induced transparency effect in hybrid terahertz metamaterials with active control and multi-dark modes
Yuting Zhang(张玉婷), Songyi Liu(刘嵩义), Wei Huang(黄巍), Erxiang Dong(董尔翔), Hongyang Li(李洪阳), Xintong Shi(石欣桐), Meng Liu(刘蒙), Wentao Zhang(张文涛), Shan Yin(银珊), and Zhongyue Luo(罗中岳). Chin. Phys. B, 2022, 31(6): 068702.
[9] Sequential generation of self-starting diverse operations in all-fiber laser based on thulium-doped fiber saturable absorber
Pei Zhang(张沛), Kaharudin Dimyati, Bilal Nizamani, Mustafa M. Najm, and S. W. Harun. Chin. Phys. B, 2022, 31(6): 064204.
[10] Collision enhanced hyper-damping in nonlinear elastic metamaterial
Miao Yu(于淼), Xin Fang(方鑫), Dianlong Yu(郁殿龙), Jihong Wen(温激鸿), and Li Cheng(成利). Chin. Phys. B, 2022, 31(6): 064303.
[11] Switchable terahertz polarization converter based on VO2 metamaterial
Haotian Du(杜皓天), Mingzhu Jiang(江明珠), Lizhen Zeng(曾丽珍), Longhui Zhang(张隆辉), Weilin Xu(徐卫林), Xiaowen Zhang(张小文), and Fangrong Hu(胡放荣). Chin. Phys. B, 2022, 31(6): 064210.
[12] Dynamically controlled asymmetric transmission of linearly polarized waves in VO2-integrated Dirac semimetal metamaterials
Man Xu(许曼), Xiaona Yin(殷晓娜), Jingjing Huang(黄晶晶), Meng Liu(刘蒙), Huiyun Zhang(张会云), and Yuping Zhang(张玉萍). Chin. Phys. B, 2022, 31(6): 067802.
[13] Simulated and experimental studies of a multi-band symmetric metamaterial absorber with polarization independence for radar applications
Hema O. Ali, Asaad M. Al-Hindawi, Yadgar I. Abdulkarim, Ekasit Nugoolcharoenlap, Tossapol Tippo,Fatih Özkan Alkurt, Olcay Altıntaş, and Muharrem Karaaslan. Chin. Phys. B, 2022, 31(5): 058401.
[14] A flexible ultra-broadband metamaterial absorber working on whole K-bands with polarization-insensitive and wide-angle stability
Tao Wang(汪涛), He-He He(何贺贺), Meng-Di Ding(丁梦迪), Jian-Bo Mao(毛剑波), Ren Sun(孙韧), and Lei Sheng(盛磊). Chin. Phys. B, 2022, 31(3): 037804.
[15] A high-quality-factor ultra-narrowband perfect metamaterial absorber based on monolayer molybdenum disulfide
Liying Jiang(蒋黎英), Yingting Yi(易颖婷), Yijun Tang(唐轶峻), Zhiyou Li(李治友),Zao Yi(易早), Li Liu(刘莉), Xifang Chen(陈喜芳), Ronghua Jian(简荣华),Pinghui Wu(吴平辉), and Peiguang Yan(闫培光). Chin. Phys. B, 2022, 31(3): 038101.
No Suggested Reading articles found!