CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Metamaterial absorbers realized in X-band rectangular waveguide |
Huang Yong-Jun (黄勇军)a, Wen Guang-Jun (文光俊)a, Li Jian (李建)a, Zhong Jing-Ping (钟靖平)a, Wang Ping (王平)a, Sun Yuan-Hua (孙元华)a, O. Gordona, Zhu Wei-Ren (朱卫仁 )b |
a Key Laboratory of Broadband Optical Fiber Transmission & Communication Networks, School of Communication and Information Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China; b Advanced Computing and Simulation Laboratory (AχL), Department of Electrical and Computer Systems Engineering, Monash University, Clayton, Victoria 3800, Australia |
|
|
Abstract In this paper, we demonstrate six types of metamaterial absorbers (MMAs) by measuring their absorptivities in an X-band (8-12 GHz) rectangular waveguide. Some of the MMAs have been demonstrated previously by using the free space measurement method, and the others are proposed firstly in this paper. The measured results show that all of the six MMAs exhibit high absorptivities above 98%, which have the similar absorbing characteristics comparing to those measured in the free space. The numerically obtained surface current densities for each MMA show that the absorbing mechanism is the same as that under the free space condition. Such a demonstration method is superior to the conventional free space measurement method due to the small-scale test samples required, the simple measure device, and the low cost. Most importantly, the proposed method opens a way to make the MMAs used in microwave applications such as the matched terminations.
|
Received: 09 March 2012
Revised: 09 May 2012
Accepted manuscript online:
|
PACS:
|
78.20.Ci
|
(Optical constants (including refractive index, complex dielectric constant, absorption, reflection and transmission coefficients, emissivity))
|
|
41.20.Jb
|
(Electromagnetic wave propagation; radiowave propagation)
|
|
42.25.Bs
|
(Wave propagation, transmission and absorption)
|
|
Fund: Project supported by the Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20110185110014) and the Fundamental Research Funds for the Central Universities, China (Grant No. E022050205). |
Corresponding Authors:
Huang Yong-Jun
E-mail: yongjunh@uestc.edu.cn
|
Cite this article:
Huang Yong-Jun (黄勇军), Wen Guang-Jun (文光俊), Li Jian (李建), Zhong Jing-Ping (钟靖平), Wang Ping (王平), Sun Yuan-Hua (孙元华), O. Gordon, Zhu Wei-Ren (朱卫仁 ) Metamaterial absorbers realized in X-band rectangular waveguide 2012 Chin. Phys. B 21 117801
|
[1] |
Smith D R, Padilla W J, Vier D C, Nemat-Nasser S C and Schultz S 2000 Phys. Rev. Lett. 84 4184
|
[2] |
Shelby R A, Smith D R and Schultz S 2001 Science 292 77
|
[3] |
Huang Y J, Wen G J, Li T Q and Xie K 2010 Appl. Compu. Electrom. Soc. J. 25 696
|
[4] |
Huang Y J, Wen G J, Li T Q, Li L W and Xie K 2012 IEEE Antennas and Wireless Propagation Letters 11 264
|
[5] |
Huang Y J, Wen G J, Yang Y J and Xie K 2012 Appl. Phys. A 106 79
|
[6] |
Yang Y M, Wang J F, Xia S, Bai P, Li Z, Wang J, Xu Z and Qu S B 2011 Chin. Phys. B 20 014101
|
[7] |
Fan J, Sun G Y and Zhu W R 2011 Chin. Phys. B 20 114101
|
[8] |
Zhou Q L, Shi Y L, Wang A H, Li L and Zhang C L 2012 Chin. Phys. B 21 058701
|
[9] |
Tang M C, Xiao S Q, Guang J, Bai Y Y, Gao S S and Wang B Z 2010 Chin. Phys. B 19 074214
|
[10] |
Ma H, Qu S B, Xu Z, Zhang J Q and Wang J H 2009 Chin. Phys. B 18 1025
|
[11] |
Landy N I, Sajuyigbe S, Mock J J, Smith D R and Padilla W J 2008 Phys. Rev. Lett. 100 207402
|
[12] |
Maier T and Brueckl H 2010 Opt. Lett. 35 3766
|
[13] |
Zhu W R and Zhao X P 2010 Eur. Phys. J. Appl. Phys. 50 21101
|
[14] |
Hu C G, Li X, Feng Q, Chen X N and Luo X G 2010 Opt. Express 18 6598
|
[15] |
Alici K B, Bilotti F, Vegni L and Ozbay E 2010 J. Appl. Phys. 108 083113
|
[16] |
Cheng Y and Yang H 2010 J. Appl. Phys. 108 034906
|
[17] |
Cheng Y, Yang H, Cheng Z and Wu N 2011 Appl. Phys. A 102 99
|
[18] |
Gu C, Qu S B, Pei Z B and Xu Z 2011 Chin. Phys. B 20 037801
|
[19] |
Xu Y Q, Zhou P H, Zhang H B, Chen L and Deng L J 2011 J. Appl. Phys. 110 044102
|
[20] |
Tao H, Landy N I, Bingham C M, Zhang X, Averitt R D and Padilla W J 2008 Opt. Express 16 7181
|
[21] |
Tao H, Bingham C M, Strikwerda A C, Pilon D, Shrekenhamer D, Landy N I, Fan K, Zhang X, Padilla W J and Averitt R D 2008 Phys. Rev. B 78 241103
|
[22] |
Landy N I, Bingham C M, Tyler T, Jokerst N, Smith D R and Padilla W J 2009 Phys. Rev. B 79 125104
|
[23] |
Grant J, Ma Y, Saha S, Lok L B, Khalid A and Cumming D R S 2011 Opt. Lett. 36 1524
|
[24] |
Zhu W and Zhao X 2009 J. Opt. Soc. Am. B 26 2382
|
[25] |
Zhu W, Zhao X, Gong B, Liu L and Su B 2011 Appl. Phys. A 102 147
|
[26] |
Gong Y, Li Z, Fu J, Chen Y, Wang G, Lu H, Wang L and Liu X 2011 Opt. Express 19 10193
|
[27] |
Wen Q Y, Zhang H W, Xie Y S, Yang Q H and Liu Y L 2009 Appl. Phys. Lett. 95 241111
|
[28] |
Tao H, Bingham C M, Pilon D, Fan K, Strikwerda A C, Shrekenhamer D, Padilla W J, Zhang X and Averitt R D 2010 J. Phys. D: Appl. Phys. 43 225102
|
[29] |
Ma Y, Chen Q, Grant J, Saha S C, Khalid A and Cumming D R S 2011 Opt. Lett. 36 945
|
[30] |
Luo H, Cheng Y Z and Gong R Z 2011 Eur. Phys. J. B 81 387
|
[31] |
Li H, Yuan L H, Zhou B, Shen X P, Cheng Q and Cui T J 2011 J. Appl. Phys. 110 014909
|
[32] |
Shen X P, Cui T J, Zhao J M, Ma H F, Jiang W X and Li H 2011 Opt. Express 19 9401
|
[33] |
Gu C, Qu S B, Pei Z B, Xu Z, Liu J and Gu W 2011 Chin. Phys. B 20 017801
|
[34] |
Sun J B, Liu L Y, Dong G Y and Zhou J 2011 Opt. Express 19 21155
|
[35] |
Ding F, Cui Y X, Ge X C, Jin Y and He S L 2012 Appl. Phys. Lett. 100 103506
|
[36] |
Liu Y H, Gu S, Luo C R and Zhao X P 2012 Appl. Phys. A 108 19
|
[37] |
Yang Y J, Huang Y J, Wen G J, Zhong J P, Sun H B and Gordon O 2012 Chin. Phys. B 21 038501
|
[38] |
Zhu W R, Huang Y J, Rukhlenko I D, Wen G J and Premaratne M 2012 Opt. Express 20 6616
|
[39] |
Li L, Yang Y and Liang C 2011 J. Appl. Phys. 110 063702
|
[40] |
Padilla W J, Aronsson M T, Highstrete C, Lee M A, Taylor J and Averitt R D Phys. Rev. B 75 041102
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|