Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(7): 074211    DOI: 10.1088/1674-1056/20/7/074211
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

The disorder effect on the performance of novel waveguides constructed in two-dimensional amorphous photonic materials

Chen Xiao(陈笑) and Wang Yi-Quan(王义全)
College of Science, Minzu University of China, Beijing 100081, China
Abstract  On the basis of two-dimensional amorphous photonic materials, we have designed a novel waveguide by inserting thinner cylindrical inclusions in the centre of basic hexagonal units of the amorphous structure along a given path. This waveguide in amorphous structure is similar to the coupled resonator optical waveguides in periodic photonic crystals. The transmission of this waveguide for S-polarized waves is investigated by a multiple-scattering method. Compared with the conventional waveguide by removing a line of cells from amorphous photonic materials, the guiding properties of this waveguide, including the transmissivity and bandwidth, are improved significantly. Then we study the effect of various types of positional disorder on the functionality of this device. Our results show that the waveguide performance is quite sensitive to the disorder located on the boundary layer of the waveguide, but robust against the disorder in the other area in amorphous structure except the waveguide border. This disorder effect in amorphous photonic materials is similar to the case in periodic photonic crystals.
Keywords:  photonic crystal      amorphous photonic material      waveguide      disorder  
Received:  21 December 2010      Revised:  20 January 2011      Accepted manuscript online: 
PACS:  42.70.Qs (Photonic bandgap materials)  
  42.82.Et (Waveguides, couplers, and arrays)  

Cite this article: 

Chen Xiao(陈笑) and Wang Yi-Quan(王义全) The disorder effect on the performance of novel waveguides constructed in two-dimensional amorphous photonic materials 2011 Chin. Phys. B 20 074211

[1] Yablonovitch E 1987 Phys. Rev. Lett. 58 2059
[2] John S 1987 Phys. Rev. Lett. 58 2486
[3] Joannopoulos J D, Johnson S G, Winn J N and Meade R D 2008 Photonic Crystals: Molding the Flow of Light 2nd edn. (Princeton: Princeton University Press)
[4] Chutinan A and Noda S 2000 Phys. Rev. B 62 4488
[5] Li Z Y and Ho K M 2003 Phys. Rev. B 68 155101
[6] Tokushima M, Kosaka H, Tomita A and Yamada H 2000 Appl. Phys. Lett. 76 952
[7] Noda S, Tomoda K, Yamamoto N and Chutinan A 2000 it Science 289 604
[8] Tang H X, Zuo Y H, Yu J Z and Wang Q M 2008 Chin. Phys. B bf 17 228
[9] Jin C J, Meng X D, Cheng B Y, Li Z L and Zhang D Z 2001 Phys. Rev. B 63 195107
[10] Li Z Y and Zhang Z Q 2000 Phys. Rev. B 62 1516
[11] Bayindir M, Cubukcu E, Bulu I, Ozbay T T E and Soukoulis C M 2001 Phys. Rev. B 64 195113
[12] Kaliteevski M A, Martinez J M, Cassagne D and Ablet J P 2002 Phys. Rev. B 66 113101
[13] Kwan K C, Zhang X D, Zhang Z Q and Chan C T 2003 Appl. Phys. Lett. 82 4414
[14] Povinelli M L, Johnson S G, Lidorikis E, Joannopoulos J D and Soljacic M 2004 Appl. Phys. Lett. 84 3639
[15] Frei W R and Johnson H T 2004 Phys. Rev. B 70 165116
[16] Lima L L, Alencar M A R C, Caetano D P, Solli D R and Hickmann J M 2008 J. Appl. Phys. 103 123102
[17] Li J M and Zhang Z Q 1998 Phys. Rev. B 58 9587
[18] Xu X S, Chen H D and Zhang D Z 2006 Acta Phys. Sin. 55 6430 (in Chinese)
[19] Zhang X D 2005 Phys. Rev. B 71 165116
[20] Feng Z F, Zhang X D, Feng S, Ren K, Li Z Y, Cheng B Y and Zhang D Z 2007 J. Opt. A: Pure Appl. Opt. 9 101
[1] Nonreciprocal wide-angle bidirectional absorber based on one-dimensional magnetized gyromagnetic photonic crystals
You-Ming Liu(刘又铭), Yuan-Kun Shi(史源坤), Ban-Fei Wan(万宝飞), Dan Zhang(张丹), and Hai-Feng Zhang(章海锋). Chin. Phys. B, 2023, 32(4): 044203.
[2] A 3-5 μm broadband YBCO high-temperature superconducting photonic crystal
Gang Liu(刘刚), Yuanhang Li(李远航), Baonan Jia(贾宝楠), Yongpan Gao(高永潘), Lihong Han(韩利红), Pengfei Lu(芦鹏飞), and Haizhi Song(宋海智). Chin. Phys. B, 2023, 32(3): 034213.
[3] Non-Markovianity of an atom in a semi-infinite rectangular waveguide
Jing Zeng(曾静), Yaju Song(宋亚菊), Jing Lu(卢竞), and Lan Zhou(周兰). Chin. Phys. B, 2023, 32(3): 030305.
[4] Dual-channel fiber-optic surface plasmon resonance sensor with cascaded coaxial dual-waveguide D-type structure and microsphere structure
Ling-Ling Li(李玲玲), Yong Wei(魏勇), Chun-Lan Liu(刘春兰), Zhuo Ren(任卓), Ai Zhou(周爱), Zhi-Hai Liu(刘志海), and Yu Zhang(张羽). Chin. Phys. B, 2023, 32(2): 020702.
[5] Multi-band polarization switch based on magnetic fluid filled dual-core photonic crystal fiber
Lianzhen Zhang(张连震), Xuedian Zhang(张学典), Xiantong Yu(俞宪同), Xuejing Liu(刘学静), Jun Zhou(周军), Min Chang(常敏), Na Yang(杨娜), and Jia Du(杜嘉). Chin. Phys. B, 2023, 32(2): 024205.
[6] Spontaneous emission of a moving atom in a waveguide of rectangular cross section
Jing Zeng(曾静), Jing Lu(卢竞), and Lan Zhou(周兰). Chin. Phys. B, 2023, 32(2): 020302.
[7] High gain and circularly polarized substrate integrated waveguide cavity antenna array based on metasurface
Hao Bai(白昊), Guang-Ming Wang(王光明), and Xiao-Jun Zou(邹晓鋆). Chin. Phys. B, 2023, 32(1): 014101.
[8] Method of measuring one-dimensional photonic crystal period-structure-film thickness based on Bloch surface wave enhanced Goos-Hänchen shift
Yao-Pu Lang(郎垚璞), Qing-Gang Liu(刘庆纲), Qi Wang(王奇), Xing-Lin Zhou(周兴林), and Guang-Yi Jia(贾光一). Chin. Phys. B, 2023, 32(1): 017802.
[9] Second harmonic generation from precise diamond blade diced ridge waveguides
Hui Xu(徐慧), Ziqi Li(李子琦), Chi Pang(逄驰), Rang Li(李让), Genglin Li(李庚霖), Sh. Akhmadaliev, Shengqiang Zhou(周生强), Qingming Lu(路庆明), Yuechen Jia(贾曰辰), and Feng Chen(陈峰). Chin. Phys. B, 2022, 31(9): 094209.
[10] Effect of spatial heterogeneity on level of rejuvenation in Ni80P20 metallic glass
Tzu-Chia Chen, Mahyuddin KM Nasution, Abdullah Hasan Jabbar, Sarah Jawad Shoja, Waluyo Adi Siswanto, Sigiet Haryo Pranoto, Dmitry Bokov, Rustem Magizov, Yasser Fakri Mustafa, A. Surendar, Rustem Zalilov, Alexandr Sviderskiy, Alla Vorobeva, Dmitry Vorobyev, and Ahmed Alkhayyat. Chin. Phys. B, 2022, 31(9): 096401.
[11] Current carrying states in the disordered quantum anomalous Hall effect
Yi-Ming Dai(戴镒明), Si-Si Wang(王思思), Yan Yu(禹言), Ji-Huan Guan(关济寰), Hui-Hui Wang(王慧慧), and Yan-Yang Zhang(张艳阳). Chin. Phys. B, 2022, 31(9): 097302.
[12] Dual-channel tunable near-infrared absorption enhancement with graphene induced by coupled modes of topological interface states
Zeng-Ping Su(苏增平), Tong-Tong Wei(魏彤彤), and Yue-Ke Wang(王跃科). Chin. Phys. B, 2022, 31(8): 087804.
[13] High sensitivity dual core photonic crystal fiber sensor for simultaneous detection of two samples
Pibin Bing(邴丕彬), Guifang Wu(武桂芳), Qing Liu(刘庆), Zhongyang Li(李忠洋),Lian Tan(谭联), Hongtao Zhang(张红涛), and Jianquan Yao(姚建铨). Chin. Phys. B, 2022, 31(8): 084208.
[14] Sound-transparent anisotropic media for backscattering-immune wave manipulation
Wei-Wei Kan(阚威威), Qiu-Yu Li(李秋雨), and Lei Pan(潘蕾). Chin. Phys. B, 2022, 31(8): 084302.
[15] Enhancing performance of GaN-based LDs by using GaN/InGaN asymmetric lower waveguide layers
Wen-Jie Wang(王文杰), Ming-Le Liao(廖明乐), Jun Yuan(袁浚), Si-Yuan Luo(罗思源), and Feng Huang(黄锋). Chin. Phys. B, 2022, 31(7): 074206.
No Suggested Reading articles found!