Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(7): 074210    DOI: 10.1088/1674-1056/20/7/074210
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

A compact in-plane photonic crystal channel drop filter

Zhao Yi-Nan(赵铱楠), Li Ke-Zheng(李科铮), Wang Xue-Hua(王雪华), and Jin Chong-Jun (金崇君)
State Key Laboratory of Optoelectronic Materials and Technologies, School of Physics and Engineering, Sun Yat-sen University, Guangzhou 510275, China
Abstract  This paper presents a novel in-plane photonic crystal channel drop filter. The device is composed of a resonant cavity sandwiched by two parallel waveguides. The cavity has two resonant modes with opposite symmetries. Tuning these two modes into degeneracy causes destructive interference in bus waveguide, which results in high forward drop efficiency at the resonant wavelength. From the result of numerical analysis by using two-dimensional finite-difference time-domain method, the channel drop filter has a drop efficiency of 96% and a Q value of over 3000, which can be used in dense wavelength division multiplexing systems.
Keywords:  photonic band gap materials      integrated optics      optical waveguides      optical communications devices  
Received:  04 March 2010      Revised:  06 January 2011      Accepted manuscript online: 
PACS:  42.70.Qs (Photonic bandgap materials)  
  42.79.Gn (Optical waveguides and couplers)  
  42.82.Et (Waveguides, couplers, and arrays)  

Cite this article: 

Zhao Yi-Nan(赵铱楠), Li Ke-Zheng(李科铮), Wang Xue-Hua(王雪华), and Jin Chong-Jun (金崇君) A compact in-plane photonic crystal channel drop filter 2011 Chin. Phys. B 20 074210

[1] Yablonovitch E 1987 Phys. Rev. Lett. 58 2059
[2] John S 1987 Phys. Rev. Lett. 58 2486
[3] Mekis A, Chen J C, Kurland I, Fan S, Villeneuve P R and Joannopoulos J D 1996 Phys. Rev. Lett. 77 3787
[4] Johnson S G, Villeneuve P R, Fan S and Joannopoulos J D 2000 Phys. Rev. B 62 8212
[5] Chutinan A and Noda S 2000 Phys. Rev. B 62 4488
[6] Ni P G 2010 Acta Phys. Sin. 59 340 (in Chinese)
[7] Yoshie T, Vuckovic J, Scherer A, Chen H and Deppe D 2001 Appl. Phys. Lett. 79 4289
[8] Akahane Y, Asano T, Song B and Noda S 2003 Nature 43 944
[9] Notomi M and Taniyama H 2008 Opt. Express 16 18657
[10] Song B S, Noda S, Asano T and Akahane Y 2005 Nature Mater. 4 207
[11] Moreolo M S, Morra V and Cincotti G 2008 J. Opt. A: Pure Appl. Opt. 10 064002
[12] Mori D and Baba T 2004 Appl. Phys. Lett. 85 1101
[13] Yanik M F, Fan S and Soljacic M 2003 Appl. Phys. Lett. 83 2739
[14] Feng T H, Dai Q F, Wu L J, Guo Q, Hu W and Lan S 2008 Chin. Phys. B 17 4533
[15] Notomi M, Shinya A, Mitsugi S, Kira G, Kuramochi E and Tanabe T 2005 Opt. Express 13 2678
[16] Fan S, Villeneuve P, Joannopoulos J and Haus H 1998 Opt. Express 3 4
[17] Fan S, Villeneuve P R, Joannopoulos J D and Haus H A 1998 Phys. Rev. Lett. 80 960
[18] Min B K, Kim J E and Park H Y 2004 Opt. Commun. 237 59
[19] Qiu M and Jaskorzynska B 2003 Appl. Phys. Lett. 83 1074
[20] Hwang K and Song G 2005 Opt. Express 13 1948
[21] Fasquel S, M'elique X, Vanb'esien O and Lippens D 2002 Superlattices Microst. 32 145
[22] Noda S, Chutinan A and Imada M 2000 Nature 407 608
[23] Zhang Z and Qiu M 2005 Photonics and Nanostructures-Fundamentals and Applications 3 84
[24] Djavid M, Ghaffari A, Monifi F and Abrishamian M S 2008 J. Opt. A: Pure Appl. Opt. 10 055203
[25] Takano H, Song B S, Asano T and Noda S 2005 Appl. Phys. Lett. 86 241101
[26] Qiang Z, Zhou W and Soref R A 2007 Opt. Express 15 1823
[27] Qiu M 2004 Electron. Lett. 40 539
[28] Manzacca G, Paciotti D, Marchese A, Moreolo M S and Cincotti G 2007 Photonics and Nanostructures-Fundamentals and Applications 5 164
[29] Zhang Z and Qiu M 2005 Opt. Express 13 2596
[30] Dórazio A, de Sario M, Marrocco V, Petruzzelli V and Prudenzano F 2008 IEEE Trans. Nanotech. 7 10
[31] Wang Z and Fan S 2006 Photonics and Nanostructures-Fundamentals and Applications 4 132
[32] Manolatou C, Khan M J, Fan S, Villeneuve P R, Haus H A and Joannopoulos J D 1999 IEEE J. Quantum Electron. 35 1322
[1] Second harmonic generation from precise diamond blade diced ridge waveguides
Hui Xu(徐慧), Ziqi Li(李子琦), Chi Pang(逄驰), Rang Li(李让), Genglin Li(李庚霖), Sh. Akhmadaliev, Shengqiang Zhou(周生强), Qingming Lu(路庆明), Yuechen Jia(贾曰辰), and Feng Chen(陈峰). Chin. Phys. B, 2022, 31(9): 094209.
[2] Enhancement of the second harmonic generation from monolayer WS2 coupled with a silica microsphere
Xiao-Zhuo Qi(祁晓卓), and Xi-Feng Ren(任希锋). Chin. Phys. B, 2022, 31(10): 104203.
[3] Standing-wave spectrometry in silicon nano-waveguides using reflection-based near-field scanning optical microscopy
Yi-Zhi Sun(孙一之), Wei Ding(丁伟), Bin-Bin Wang(王斌斌), Rafael Salas-Montiel, Sylvain Blaize, Renaud Bachelot, Zhong-Wei Fan(樊仲维), Li-Shuang Feng(冯丽爽). Chin. Phys. B, 2019, 28(1): 010702.
[4] Electrically pumped metallic and plasmonic nanolasers
Martin T Hill. Chin. Phys. B, 2018, 27(11): 114210.
[5] Tunable optical filter using second-order micro-ring resonator
Lin Deng(邓林), Dezhao Li(李德钊), Zilong Liu(刘子龙), Yinghao Meng(孟英昊), Xiaonan Guo(郭小男), Yonghui Tian(田永辉). Chin. Phys. B, 2017, 26(2): 024209.
[6] All polymer asymmetric Mach-Zehnder interferometer waveguide sensor by imprinting bonding and laser polishing
Yu Liu(刘豫), Yue Sun(孙月), Yun-Ji Yi(衣云骥), Liang Tian(田亮), Yue Cao(曹悦), Chang-Ming Chen(陈长鸣), Xiao-Qiang Sun(孙小强), Da-Ming Zhang(张大明). Chin. Phys. B, 2017, 26(12): 124215.
[7] Observation of trapped light induced by Dwarf Dirac-cone in out-of-plane condition for photonic crystals
Subir Majumder, Tushar Biswas, Shaymal K Bhadra. Chin. Phys. B, 2016, 25(10): 107102.
[8] Switching and Fano resonance via exciton-plasmon interaction
Li Jian-Bo (李建波), He Meng-Dong (贺梦冬), Wang Xin-Jun (王新军), Peng Xiao-Fang (彭小芳), Chen Li-Qun (陈丽群). Chin. Phys. B, 2014, 23(6): 067302.
[9] High-speed and broad optical bandwidth silicon modulator
Xu Hao (徐浩), Li Xian-Yao (李显尧), Xiao Xi (肖希), Li Zhi-Yong (李智勇), Yu Yu-De (俞育德), Yu Jin-Zhong (余金中). Chin. Phys. B, 2013, 22(11): 114212.
[10] Reconfigurable all-optical dual-directional half-subtractor for high-speed differential phase shift keying signal based on semiconductor optical amplifiers
Zhang Yin(张印), Dong Jian-Ji(董建绩), Lei Lei(雷蕾), and Zhang Xin-Liang(张新亮) . Chin. Phys. B, 2012, 21(2): 024209.
[11] CMOS compatible highly efficient grating couplers with a stair-step blaze profile
Zhou Liang(周亮), Li Zhi-Yong(李智勇), Hu Ying-Tao(胡应涛), Xiong Kang(熊康), Fan Zhong-Chao(樊中朝), Han Wei-Hua(韩伟华), Yu Yu-De (俞育德), and Yu Jin-Zhong (余金中) . Chin. Phys. B, 2011, 20(7): 074212.
[12] Modified surface plasmonic waveguide formed by nanometric parallel lines
Xue Wen-Rui(薛文瑞), Guo Ya-Nan(郭亚楠), and Zhang Wen-Mei(张文梅). Chin. Phys. B, 2010, 19(1): 017302.
[13] Long-range surface plasmon polaritons with subwavelength mode expansion in an asymmetrical system
Chen Jian-Jun(陈建军), Li Zhi(李智), and Gong Qi-Huang(龚旗煌). Chin. Phys. B, 2009, 18(8): 3535-3541.
[14] Propagation properties of a modified surface plasmonic waveguide with an arc slot
Xue Wen-Rui(薛文瑞), Guo Ya-Nan(郭亚楠), and Zhang Wen-Mei(张文梅). Chin. Phys. B, 2009, 18(6): 2529-2534.
[15] All-optical error-bit amplitude monitor based on NOT and AND gates in cascaded semiconductor optical amplifiers
Dong Jian-Ji (董建绩), Zhang Xin-Liang (张新亮), Huang De-Xiu (黄德修). Chin. Phys. B, 2008, 17(11): 4226-4231.
No Suggested Reading articles found!