Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(6): 064204    DOI: 10.1088/1674-1056/19/6/064204
CLASSICAL AREAS OF PHENOMENOLOGY Prev   Next  

Quantum communication and entanglement between two distant atoms via vacuum fields

Zheng Shi-Biao(郑仕标)
Department of Physics and State Key Laboratory Breeding Base of Photocatalysis, Fuzhou University, Fuzhou 350002, China
Abstract  This paper proposes an efficient scheme for quantum communication between two atoms trapped in distant cavities which are connected by an optical fibre. During the operation, all the atomic system, the cavity modes and the fibre are not excited. The quantum state is mediated by the vacuum fields. The idea can be used to realize quantum entanglement between two distant atoms via vacuum.
Keywords:  quantum communication      entanglement      vacuum field  
Received:  02 October 2009      Accepted manuscript online: 
PACS:  03.67.Hk (Quantum communication)  
  03.67.Mn (Entanglement measures, witnesses, and other characterizations)  
  37.10.De (Atom cooling methods)  
  42.50.Dv (Quantum state engineering and measurements)  
  42.81.-i (Fiber optics)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No.~10674025) and the Doctoral Foundation of the Ministry of Education of China (Grant No.~20070386002).

Cite this article: 

Zheng Shi-Biao(郑仕标) Quantum communication and entanglement between two distant atoms via vacuum fields 2010 Chin. Phys. B 19 064204

[1] Cirac J I, Ekert A K, Huelga S F and Macchiavello C 1999 % Phys. Rev. A 59 4249
[2] Rauschenbeutel A, Nogues G, Osnaghi S, Bertet P, Brune M, Raimond J M and Haroche S 1999 Phys. Rev. Lett. 83 5166
[3] Osnaghi S, Bertet P, Auffeves A, Maioli P, Brune M, Raimond J M and Haroche S 2001 Phys. Rev. Lett. 87 037902
[4] Maitre X, Hagley E, Nogues G, Wunderlich C, Goy P, Brune M, Raimond J M and Haroche S 1997 Phys. Rev. Lett. 79 769
[5] Cirac J I, Zoller P, Kimble H J and Mabuchi H 1997 Phys. Rev. Lett. 78 3221
[6] Enk S J, Cirac J I and Zoller P 1997 Phys. Rev. Lett. % 78 4293
[7] Serafini A, Mancini S and Bose S 2006 Phys. Rev. Lett . 96 010503
[8] Yin Z Q and Li F L 2007 Phys. Rev. A 75 012324
[9] Ye S Y, Zhong Z R and Zheng S B 2008 Phys. Rev. A 77 014303
[10] Chen L B, Ye M Y, Lin G W, Du Q H and Lin X M 2007 Phys. Rev. A 76 062304
[11] Song J, Xia Y, Song H S, Guo J L and Nie J 2007 Europhys. Lett. 80 60001
[12] Tang Y X, Lin X M, Lin G W, Chen L B and Huang X H 2008 Chin. Phys. B 17 4388
[13] Zheng S B 2009 Appl. Phys. Lett. 94 154101
[14] Imamoglu A, Awschalom, D D, Burkard G, DiVincenzo D P, Loss D, Sherwin M and Small A 1999 Phys. Rev. Lett. 83 4204
[15] Zheng S B and Guo G C 2000 Phys. Rev. Lett. 85 2392
[16] Boozer A D, Boca A, Miller R, Northup T E and Kimble H J 2006 Phys. Rev. Lett. 97 083602
[1] Unified entropy entanglement with tighter constraints on multipartite systems
Qi Sun(孙琪), Tao Li(李陶), Zhi-Xiang Jin(靳志祥), and Deng-Feng Liang(梁登峰). Chin. Phys. B, 2023, 32(3): 030304.
[2] Entanglement and thermalization in the extended Bose-Hubbard model after a quantum quench: A correlation analysis
Xiao-Qiang Su(苏晓强), Zong-Ju Xu(许宗菊), and You-Quan Zhao(赵有权). Chin. Phys. B, 2023, 32(2): 020506.
[3] Transformation relation between coherence and entanglement for two-qubit states
Qing-Yun Zhou(周晴云), Xiao-Gang Fan(范小刚), Fa Zhao(赵发), Dong Wang(王栋), and Liu Ye(叶柳). Chin. Phys. B, 2023, 32(1): 010304.
[4] Characterizing entanglement in non-Hermitian chaotic systems via out-of-time ordered correlators
Kai-Qian Huang(黄恺芊), Wei-Lin Li(李蔚琳), Wen-Lei Zhao(赵文垒), and Zhi Li(李志). Chin. Phys. B, 2022, 31(9): 090301.
[5] Nonreciprocal coupling induced entanglement enhancement in a double-cavity optomechanical system
Yuan-Yuan Liu(刘元元), Zhi-Ming Zhang(张智明), Jun-Hao Liu(刘军浩), Jin-Dong Wang(王金东), and Ya-Fei Yu(於亚飞). Chin. Phys. B, 2022, 31(9): 094203.
[6] Purification in entanglement distribution with deep quantum neural network
Jin Xu(徐瑾), Xiaoguang Chen(陈晓光), Rong Zhang(张蓉), and Hanwei Xiao(肖晗微). Chin. Phys. B, 2022, 31(8): 080304.
[7] Direct measurement of two-qubit phononic entangled states via optomechanical interactions
A-Peng Liu(刘阿鹏), Liu-Yong Cheng(程留永), Qi Guo(郭奇), Shi-Lei Su(苏石磊), Hong-Fu Wang(王洪福), and Shou Zhang(张寿). Chin. Phys. B, 2022, 31(8): 080307.
[8] Robustness of two-qubit and three-qubit states in correlated quantum channels
Zhan-Yun Wang(王展云), Feng-Lin Wu(吴风霖), Zhen-Yu Peng(彭振宇), and Si-Yuan Liu(刘思远). Chin. Phys. B, 2022, 31(7): 070302.
[9] Self-error-rejecting multipartite entanglement purification for electron systems assisted by quantum-dot spins in optical microcavities
Yong-Ting Liu(刘永婷), Yi-Ming Wu(吴一鸣), and Fang-Fang Du(杜芳芳). Chin. Phys. B, 2022, 31(5): 050303.
[10] Effects of colored noise on the dynamics of quantum entanglement of a one-parameter qubit—qutrit system
Odette Melachio Tiokang, Fridolin Nya Tchangnwa, Jaures Diffo Tchinda,Arthur Tsamouo Tsokeng, and Martin Tchoffo. Chin. Phys. B, 2022, 31(5): 050306.
[11] Probabilistic resumable quantum teleportation in high dimensions
Xiang Chen(陈想), Jin-Hua Zhang(张晋华), and Fu-Lin Zhang(张福林). Chin. Phys. B, 2022, 31(3): 030302.
[12] Tetrapartite entanglement measures of generalized GHZ state in the noninertial frames
Qian Dong(董茜), R. Santana Carrillo, Guo-Hua Sun(孙国华), and Shi-Hai Dong(董世海). Chin. Phys. B, 2022, 31(3): 030303.
[13] Entanglement spectrum of non-Abelian anyons
Ying-Hai Wu(吴英海). Chin. Phys. B, 2022, 31(3): 037302.
[14] Time evolution law of a two-mode squeezed light field passing through twin diffusion channels
Hai-Jun Yu(余海军) and Hong-Yi Fan(范洪义). Chin. Phys. B, 2022, 31(2): 020301.
[15] Channel parameters-independent multi-hop nondestructive teleportation
Hua-Yang Li(李华阳), Yu-Zhen Wei(魏玉震), Yi Ding(丁祎), and Min Jiang(姜敏). Chin. Phys. B, 2022, 31(2): 020302.
No Suggested Reading articles found!