Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(6): 064205    DOI: 10.1088/1674-1056/19/6/064205
CLASSICAL AREAS OF PHENOMENOLOGY Prev   Next  

Nonclassicality of photon-added squeezed vacuum states

Si Kun(司坤), Ji Xiao-Hui(姬晓辉), and Jia Huan-Yu(贾焕玉)
Institute of Modern Physics, Southwest Jiaotong University, Chengdu 610031, China
Abstract  By applying the bosonic creation operator to squeezed vacuum states, this paper introduces a new kind of quantum states: photon-added squeezed vacuum states. It also presents an experimental approach to prepare these states, and investigates their quantum statistical properties by the numerical method. The results indicate that these states reveal some interesting non-classical properties, such as anti-bunching effects, squeezing effects and negativities of the relevant Wigner functions.
Keywords:  photon-added squeezed vacuum states      anti-bunching effect      squeezing effect      Wigner function  
Received:  20 July 2009      Accepted manuscript online: 
PACS:  42.50.Dv (Quantum state engineering and measurements)  
  05.30.Jp (Boson systems)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No.~10874142).

Cite this article: 

Si Kun(司坤), Ji Xiao-Hui(姬晓辉), and Jia Huan-Yu(贾焕玉) Nonclassicality of photon-added squeezed vacuum states 2010 Chin. Phys. B 19 064205

[1] Peng J S and Li G X 1996 Introduction to Modern Quantum Optics (Beijing: Science Press) p.~152 (in Chinese)
[2] Wei L F, Wang S J and Jie Q L 1997 Chin. Sci. Bull. 42 1724 (in Chinese)
[3] Wei L F, Wang S J and Xi D P 1999 J. Opt. B 1 619 %以下序号加1
[3] Caves C M, Thorne K S, Drever R W P, Sandberg V D and Zimmerman D 1980 Rev. Mod. Phys. 52 314
[4] Parigi V, Zavatta A, Kim M and Bellini M 2007 Science 317 1890
[5] Zavatta A, Viciani S and Bellini M 2004 Science 306 660
[6] Zavatta A, Viciani S and Bellini M 2005 Phys. Rev. A 72 023820-1-9
[7] Kentaro W, Hiroki T, Akira F and Masahide S 2007 Opt. Express 715 3568
[8] Yurke B and Stoler D 1987 Phys. Rev. A 36 1955
[9] Dakna M, Anhut T, Opatrn\'{y T, K\"{n ll L and Welsch D G 1997 Phys. Rev. A 55 3184
[10] Teich M C, Saleh B E and Stoler D 1983 Opt. Comm . 46 244
[11] Meng X G and Wang J S 2007 Acta Phys. Sin. 56 4578 (in Chinese)
[12] Zhang M and Jia H Y 2008 Acta Phys. Sin. 57 880 (in Chinese)
[13] Meng X G and Wang J S 2007 Acta Phys. Sin. 56 2154 (in Chinese)
[14] Yu X M, Liang G D and Zhong Y H 2006 Acta Phys. Sin. 55 2128 (in Chinese)
[15] Walls D F 1983 Nature 306 141
[16] Muhammad A A, Lin J, Qian Y, Ma Z M, Ma A Q and Liu S T 2007 Chin. Phys. 16 1351
[17] Zhang Y J, Xia Y J, Ren T Q, Du X M and Liu Y L 2009 Acta Phys. Sin. 58 722 (in Chinese)
[18] Wei L F and Xi D P 2000 Chin. Phys. 9 586
[19] Biswas A and Agarwal G S 2007 Phys. Rev. A 75 032104
[20] Yang Q Y, Sun J W, Wei L F and Ding L E 2005 Acta Phys. Sin. 54 2704 (in Chinese)
[21] Meng X G, Wang J S and Liang B L 2007 Acta Phys. Sin. 56 2160 (in Chinese)
[22] Zheng S B 2004 Chin. Phys. 13 1862
[23] Wang J S and Meng X G 2008 Chin. Phys. B 17 1254
[24] Sun Z H and Fan H Y 2000 Acta Phys. Sin. 49 74 (in Chinese)
[25] Leibfried D, Meekhof D M, King B E, Monroe C, Itano W M and Wineland D J 1996 Phys. Rev. Lett. 77 4281
[26] Fran\c{c a Santos M, Lutterbach L G, Dutra S M, Zagury N and Davidovich L 2001 Phys. Rev. A 63 033813
[27] Lvovsky A I, Hansen H, Aichele T, Benson O, Mlynek J and Schiller S 2001 Phys. Rev. Lett . 87 050402
[28] Leonhardt U 1995 Phys. Rev. Lett. 74 4101
[29] Breitenbach G, Schiller S and Mlynek J 1997 Nature 387 471
[30] Masahide S and Shigenari S 2006 Phys. Rev. A 73 043807
[31] Loudon R and Knight P L 1987 J. Mod. Opt. 34 709
[32] Walls D F 1983 Nature 302 141
[33] Schumaker B L 1986 Phys. Rep. 135 317
[34] Geabanacloche J and Leuchs G 1987 J. Mod. Opt. 34 793
[35] Buzek V, Keitel H and Knight P L 1995 Phys. Rev. A 5 2575
[36] Slusher R E, Hollberg L W, Yurke B, Mertz J C and Valley J F 1985 Phys. Rev. Lett. 55 2049
[37] Shelby R M, Levenson M D, Perlmutter S H, DeVoe R G and Walls D F 1986 Phys. Rev. Lett. 57 691
[38] Wu L A, Kimble H J, Hall J L and Wu H 1986 Phys. Rev. Lett. 57 2520
[39] Slusher R E, Grangier P, LaPorta A, Yurke B and Potasek M J 1987 Phys. Rev. Lett. 59 2566
[40] Janszky J and Kobayashi T 1990 Phys. Rev. A 41 4074
[41] Brune M, Haroche S, Raimond J M, Davidovich M and Zagury N 1992 Phys. Rev. A 45 5193
[1] Margolus-Levitin speed limit across quantum to classical regimes based on trace distance
Shao-Xiong Wu(武少雄), Chang-Shui Yu(于长水). Chin. Phys. B, 2020, 29(5): 050302.
[2] Quantum-classical correspondence and mechanical analysis ofa classical-quantum chaotic system
Haiyun Bi(毕海云), Guoyuan Qi(齐国元), Jianbing Hu(胡建兵), Qiliang Wu(吴启亮). Chin. Phys. B, 2020, 29(2): 020502.
[3] Wigner function for squeezed negative binomial state and evolution of density operator for amplitude decay
Heng-Yun Lv(吕恒云), Ji-Suo Wang(王继锁), Xiao-Yan Zhang(张晓燕), Meng-Yan Wu(吴孟艳), Bao-Long Liang(梁宝龙), Xiang-Guo Meng(孟祥国). Chin. Phys. B, 2019, 28(9): 090302.
[4] Negativity of Wigner function and phase sensitivity of an SU(1,1) interferometer
Chun-Li Liu(刘春丽), Li-Li Guo(郭丽丽), Zhi-Ming Zhang(张智明), Ya-Fei Yu(於亚飞). Chin. Phys. B, 2019, 28(6): 060704.
[5] Analytical and numerical investigations of displaced thermal state evolutions in a laser process
Chuan-Xun Du(杜传勋), Xiang-Guo Meng(孟祥国), Ran Zhang(张冉), Ji-Suo Wang(王继锁). Chin. Phys. B, 2017, 26(12): 120301.
[6] Quantum statistical properties of photon-added spin coherent states
G Honarasa. Chin. Phys. B, 2017, 26(11): 114202.
[7] Quantum metrology with two-mode squeezed thermal state: Parity detection and phase sensitivity
Heng-Mei Li(李恒梅), Xue-Xiang Xu(徐学翔), Hong-Chun Yuan(袁洪春), Zhen Wang(王震). Chin. Phys. B, 2016, 25(10): 104203.
[8] Algebraic and group treatments to nonlinear displaced number statesand their nonclassicality features: A new approach
N Asili Firouzabadi, M K Tavassoly, M J Faghihi. Chin. Phys. B, 2015, 24(6): 064204.
[9] Comparison between photon annihilation-then-creation and photon creation-then-annihilation thermal states:Non-classical and non-Gaussian properties
Xu Xue-Xiang (徐学翔), Yuan Hong-Chun (袁洪春), Wang Yan (王燕). Chin. Phys. B, 2014, 23(7): 070301.
[10] New approach for deriving the exact time evolution of density operator for diffusive anharmonic oscillator and its Wigner distribution function
Meng Xiang-Guo (孟祥国), Wang Ji-Suo (王继锁), Liang Bao-Long (梁宝龙). Chin. Phys. B, 2013, 22(3): 030307.
[11] Nonclassicality and decoherence of coherent superposition operation of photon subtraction and photon addition on squeezed state
Xu Li-Juan (徐莉娟), Tan Guo-Bin (谭国斌), Ma Shan-Jun (马善钧), Guo Qin (郭琴). Chin. Phys. B, 2013, 22(3): 030311.
[12] A new type of photon-added squeezed coherent state and its statistical properties
Zhou Jun(周军), Fan Hong-Yi(范洪义), and Song Jun(宋军) . Chin. Phys. B, 2012, 21(7): 070301.
[13] Quantum phase distribution and the number–phase Wigner function of the generalized squeezed vacuum states associated with solvable quantum systems
G. R. Honarasa, M. K. Tavassoly, and M. Hatami . Chin. Phys. B, 2012, 21(5): 054208.
[14] Nonclassicality of a two-variable Hermite polynomial state
Tan Guo-Bin(谭国斌), Xu Li-Juan(徐莉娟), and Ma Shan-Jun(马善钧) . Chin. Phys. B, 2012, 21(4): 044210.
[15] The Wigner distribution functions of coherent and partially coherent Bessel–Gaussian beams
Zhu Kai-Cheng(朱开成), Li Shao-Xin(李绍新), Tang Ying(唐英), Yu Yan(余燕), and Tang Hui-Qin(唐慧琴) . Chin. Phys. B, 2012, 21(3): 034201.
No Suggested Reading articles found!