Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(12): 123101    DOI: 10.1088/1674-1056/19/12/123101
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

Investigation of hydrogen bonding in neat dimethyl sulfoxide and binary mixture (dimethyl sulfoxide + water) by concentration-dependent Raman study and ab initio calculation

Ouyang Shun-Li(欧阳顺利)a), Wu Nan-Nan(吴楠楠)b), Liu Jing-Yao(刘靖尧) b),Sun Cheng-Lin(孙成林)a), Li Zuo-Wei(里佐威)a), and Gao Shu-Qin(高淑琴)c)
a College of Physics, Jilin University, Changchun 130012, China; b Institute of Theoretical Chemistry, State Key Laboratory of Theoretical and Computational Chemistry, Jilin University, Changchun 130023, China
Abstract  In this study, our vibrational spectroscopic analysis is made on hydrogen-bonding between dimethyl sulfoxide and water comprises both experimental Raman spectra and ab initio calculations on structures of various dimethyl sulfoxide/water clusters with increasing water content. The Raman peak position of the v(S=O) stretching mode of dimethyl sulfoxide serves as a probe for monitoring the degree of hydrogen-bonding between dimethyl sulfoxide and water. In addition, the two vibrational modes, namely, the CH3 symmetric stretching mode and the CH3 asymmetric stretching mode have been analysed under different concentrations. We relate the computational results to the experimental vibrational wavenumber trends that are observed in our concentration-dependent Raman study. The combination of experimental Raman data with ab initio calculation leads to a better knowledge of the nature of the hydrogen bonding and the structures of the hydrogen-bonded complexes studied.
Keywords:  hydrogen-bonding      Raman spectroscopy      ab initio calculations      dimethl sulphoxide  
Received:  22 May 2010      Revised:  03 July 2010      Accepted manuscript online: 
PACS:  61.20.Gy (Theory and models of liquid structure)  
  61.25.Em (Molecular liquids)  
  64.75.-g (Phase equilibria)  
  78.30.Cp  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 10774057 and 10974067) and the Graduate Innovation Fund of Jilin University.

Cite this article: 

Ouyang Shun-Li(欧阳顺利), Wu Nan-Nan(吴楠楠), Liu Jing-Yao(刘靖尧),Sun Cheng-Lin(孙成林), Li Zuo-Wei(里佐威), and Gao Shu-Qin(高淑琴) Investigation of hydrogen bonding in neat dimethyl sulfoxide and binary mixture (dimethyl sulfoxide + water) by concentration-dependent Raman study and ab initio calculation 2010 Chin. Phys. B 19 123101

[1] Ojha A K, Srivastasva S K, Koster J, Shukla M K, Leszczyhski J, Asthana B P and Kiefer W 2004 J. Mol. Struct. 689 127
[2] Vaidyanathan R, Natrajan S and Rao C N R 2002 J. Mol. Struct. 608 123
[3] Jeffrey G A 1997 An Introduction to Hydrogen Bonding (New York: Oxford University Press)
[4] MacDonald J C and Whileride G M 1994 Chem. Rev. 94 283
[5] Desiraju G R 1989 Crystal Engineering: the Design of Organic Solid (New York: Elsevier) p. 54
[6] Peddireddi V R, Ranganathan A and Ganesh K N 2001 Org. Lett. 3 99
[7] Hobze P and Sponer J 1999 Chem. Rev. 30 290
[8] Asthana B P, Takahashi H and Kiefer W 1983 Chem. Phys. Lett. 94 41
[9] Cabaco M I, Besnard M and Yarwood J 1992 Mol. Phys. 50 139
[10] Singh R K, Bhriguvansh P, Asthana B P and Verma A L 1998 it Chem. Phys. Lett. 296 611
[11] Schlücker S, Singh R K, Asthana B P, Popp J and Kiefer W 2001 J. Phys. Chem. A 105 9983
[12] Schlücker S, Koster J, Singh R K and Asthana B P 2007 it J. Phys. Chem. A 111 5185
[13] Schlund S, Mladenovic M, Bas'hilio Janke E M, Engels B and Weisz K 2005 J. Am. Chem. Soc. 127 16151
[14] Andrei H S, Solc`a N and Dopfer O 2006 Chem. Phys. Chem. 7 107
[15] Pimentel G C and McClellan A L 1960 The Hydrogen Bond (San Frecisco: Freeman)
[16] Asthana B P and Kiefer W 1992 Vibrational Spectra and Structure (Amsterdam: Elsevier) p. 67
[17] Yang Y, Liu Y L, Zhu K, Zhang L Y, Ma S Y, Liu J and Jiang Y J 2010 Chin. Phys. B 19 037802
[18] Zhang S A, Zhang H, Wang Z G and Sun Z R 2010 Chin. Phys. B 19 043201
[19] Ouyang S L, Wu N N, Sun C L, Liu J Y and Gao S Q 2010 Chin. Phys. B19 093103
[20] Martin D and Hauthal H G 1975 Dimethyl Sulfoxide (Berlin: Van Nostrand Reinhold) p. 49
[21] Sastry M I S and Singh S 1984 J. Raman Spectrosc. 15 80
[22] Wulf A and Ludwig R 2006 Chem. Phys. Chem. 7 266
[23] Stafford G J, Schaffer P C, Leung P S, Doebbler G F, Brady GW and Lyden E F X 1969 J. Chem. Phys. 50 2140
[24] Bertoluzza A, Bonora S, Battaglia M A and Monti P 1979 J. Raman Spectrosc. 8 231
[25] Brink G and Falk M 1970 J. Mol. Struct. 5 27
[26] Soper A K and Luzar A 1992 J. Chem. Phys. 97 1320
[27] Soper A K and Luzar A 1996 J. Phys. Chem. 100 1357
[28] Soper A K, Luzar A and Chandler D 1993 J. Chem. Phys. 99 6836
[29] Cabral J T, Luzar A, Teieira J and Bellissent-Funel M C 2000 it J. Chem. Phys. 113 8736
[30] Ouyang S L, Zhou M, Cao B, Lu G H, Gao S Q and Li Z W 2008 it Chem. J. Chin. Univer. 29 2055
[31] Frisch M J, Truck G W, Schlegel H B, Scuseria G E, Robb M A, Cheeseman J R, Zakrzewski V G, Montgomery J A Jr, Stratmann R E, Burant J C, Dapprich S, Millam J M, Daniels A D, Kudin K N, Strain M C, Farkas O, Tomasi J, Barone V, Cossi M, Cammi R, Mennucci B, Pomelli C, Adamo C, Clifford S, Ochterski J, Petersson G A, Ayala P Y, Cui Q, Morokuma K, Malick D K, Rabuck A D, Raghavachari K, Foresman J B, Cioslowski J, Ortiz J V, Boboul A G, Stefnov B B, Liu G, Liaschenko A, Piskorz P, Komaromi L, Gomperts R, Martin R L, Fox D J, Keith T, AlLaham M A, Peng C Y, Nanayakkara A, Gonzalez C, Challacombe M, Gill P M W, Johnson B, Chen W, Wong M W, Andres J L, Gonzalez C, Head-Gordon M, Replogle E S and Pople J A GAUSSIAN 03, revision A.1 ed. Guassian, Inc., Pittsburgh, PA, 2003
[32] Wakabayashi K, Maeda Y, Ozutsumi K and Ohtaki H 2004 J. Mol. Liq. 110 43
[33] Oxtoby D W 1979 Adv. Chem. Phys. 40 1
[34] Ojha A K, Srivastava S K, Singh R K and Asthana B P 2006 J. Phys. Chem. A 110 9849
[35] Bondarev A F and Mardaeva A I 1973 Opt. Spectrosc. 35 67
[1] Polarization Raman spectra of graphene nanoribbons
Wangwei Xu(许望伟), Shijie Sun(孙诗杰), Muzi Yang(杨慕紫), Zhenliang Hao(郝振亮), Lei Gao(高蕾), Jianchen Lu(卢建臣), Jiasen Zhu(朱嘉森), Jian Chen(陈建), and Jinming Cai(蔡金明). Chin. Phys. B, 2023, 32(4): 046803.
[2] In situ study of calcite-III dimorphism using dynamic diamond anvil cell
Xia Zhao(赵霞), Sheng-Hua Mei(梅升华), Zhi Zheng(郑直), Yue Gao(高悦), Jiang-Zhi Chen(陈姜智), Yue-Gao Liu(刘月高), Jian-Guo Sun(孙建国), Yan Li(李艳), and Jian-Hui Sun(孙建辉). Chin. Phys. B, 2022, 31(9): 096201.
[3] Radiation effects of electrons on multilayer FePS3 studied with laser plasma accelerator
Meng Peng(彭猛), Jun-Bo Yang(杨俊波), Hao Chen(陈浩), Bo-Yuan Li(李博源), Xu-Lei Ge(葛绪雷), Xiao-Hu Yang(杨晓虎), Guo-Bo Zhang(张国博), and Yan-Yun Ma(马燕云). Chin. Phys. B, 2022, 31(8): 086102.
[4] SERS activity of carbon nanotubes modified by silver nanoparticles with different particle sizes
Xiao-Lei Zhang(张晓蕾), Jie Zhang(张洁), Yuan Luo(罗元), and Jia Ran(冉佳). Chin. Phys. B, 2022, 31(7): 077401.
[5] Structural evolution and bandgap modulation of layered β-GeSe2 single crystal under high pressure
Hengli Xie(谢恒立), Jiaxiang Wang(王家祥), Lingrui Wang(王玲瑞), Yong Yan(闫勇), Juan Guo(郭娟), Qilong Gao(高其龙), Mingju Chao(晁明举), Erjun Liang(梁二军), and Xiao Ren(任霄). Chin. Phys. B, 2022, 31(7): 076101.
[6] Photothermal-chemical synthesis of P-S-H ternary hydride at high pressures
Tingting Ye(叶婷婷), Hong Zeng(曾鸿), Peng Cheng(程鹏), Deyuan Yao(姚德元), Xiaomei Pan(潘孝美), Xiao Zhang(张晓), and Junfeng Ding(丁俊峰). Chin. Phys. B, 2022, 31(6): 067402.
[7] Raman spectroscopy investigation on the pressure-induced structural and magnetic phase transition in two-dimensional antiferromagnet FePS3
Hong Zeng(曾鸿), Tingting Ye(叶婷婷), Peng Cheng(程鹏), Deyuan Yao(姚德元), and Junfeng Ding(丁俊峰). Chin. Phys. B, 2022, 31(5): 056109.
[8] Raman spectroscopy of isolated carbyne chains confined in carbon nanotubes: Progress and prospects
Johannes M. A. Lechner, Pablo Hernández López, and Sebastian Heeg. Chin. Phys. B, 2022, 31(12): 127801.
[9] Observation of large in-plane anisotropic transport in van der Waals semiconductor Nb2SiTe4
Kaiyao Zhou(周楷尧), Jun Deng(邓俊), Long Chen(陈龙), Wei Xia(夏威), Yanfeng Guo(郭艳峰), Yang Yang(杨洋), Jian-Gang Guo(郭建刚), and Liwei Guo(郭丽伟). Chin. Phys. B, 2021, 30(8): 087202.
[10] Effects of W6+ occupying Sc3+ on the structure, vibration, and thermal expansion properties of scandium tungstate
Dongxia Chen(陈冬霞), Qiang Sun(孙强), Zhanjun Yu(于占军), Mingyu Li(李明玉), Juan Guo(郭娟), Mingju Chao(晁明举), and Erjun Liang(梁二军). Chin. Phys. B, 2021, 30(6): 066501.
[11] Raman investigation of hydration structure of iodide and iodate
Zhe Liu(刘喆), Hong-Liang Zhao(赵洪亮), Hong-Zhi Lang(郎鸿志), Ying Wang(王莹), Zhan-Long Li(李占龙), Zhi-Wei Men(门志伟), Sheng-Han Wang(汪胜晗), and Cheng-Lin Sun(孙成林). Chin. Phys. B, 2021, 30(4): 043301.
[12] Elastic electron scattering with formamide-(H2O)n complexes (n=1, 2): Influence of microsolvation on the π* and σ* resonances
Kedong Wang(王克栋), Yan Wang(王言), Jie Liu(刘洁), Yiwen Wang(王怡文), and Haoxing Zhang(张浩兴). Chin. Phys. B, 2021, 30(12): 123401.
[13] Synthesis of ternary compound in H-S-Se system at high pressures
Xiao Zhang(张晓). Chin. Phys. B, 2021, 30(12): 127801.
[14] Self-assembly 2D plasmonic nanorice film for surface-enhanced Raman spectroscopy
Tingting Liu(柳婷婷), Chuanyu Liu(刘船宇), Jialing Shi(石嘉玲), Lingjun Zhang(张玲君), Xiaonan Sun(孙晓楠), and Yingzhou Huang(黄映洲). Chin. Phys. B, 2021, 30(11): 117301.
[15] Review of Raman spectroscopy of two-dimensional magnetic van der Waals materials
Yu-Jia Sun(孙宇伽), Si-Min Pang(庞思敏), and Jun Zhang(张俊). Chin. Phys. B, 2021, 30(11): 117104.
No Suggested Reading articles found!