Please wait a minute...
Chin. Phys. B, 2009, Vol. 18(7): 2933-2937    DOI: 10.1088/1674-1056/18/7/053
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Atomic and electronic structures of montmorillonite in soft rock

He Man-Chao(何满潮)a), Fang Zhi-Jie(方志杰)a), and Zhang Ping(张平)b)
a State Key Laboratory of Deep Geomechanics and Underground Engineering, China University of Mining and Technology, Beijing 100083, China; b Institute of Applied Physics and Computational Mathematics, Beijing 100088, China
Abstract  Montmorillonite is a kind of clay mineral which often causes large deformation in soft-rock tunnel engineering and thus brings about safety problems in practice. To deal with these engineering safety problems, the physical and chemical properties of montmorillonite should be studied from basic viewpoints. We study the atomic and electronic structures of montmorillonite by using density-functional theory within the local-density approximation (LDA). The results of calculation show that Al--O bond lengths are longer than Si--O bond lengths. It is found that both the valence band maximum (VBM) and the conduction band minimum (CBM) of montmorillonite are at point $\varGamma$, and the calculated direct band gap of montmorillonite is 5.35 eV. We show that the chemical bonding between cations and oxygen anions in montmorillonite is mainly ionic, accompanied as well by a minor covalent component. It is pointed out that the VBM and CBM of montmorillonite consist of oxygen 2p and cation s states, respectively. Our calculated results help to understand the chemical and physical properties of montmorillonite, and are expected to be a guide for solving the problem of large deformation of soft-rock tunnels.
Keywords:  montmorillonite      electronic structure      first-principles method  
Received:  15 December 2008      Revised:  23 January 2009      Accepted manuscript online: 
PACS:  91.60.Dc (Plasticity, diffusion, and creep)  
  71.20.Ps (Other inorganic compounds)  
  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
  89.20.Kk (Engineering)  
Fund: Project supported by the National Key Basic Research Program of China (Grant No 2006CB202200), the Program for Changjiang Scholars and Innovative Research Team in University of China (Grant No IRT0656), and the National Natural Science Foundation of China (Grant No 50490270).

Cite this article: 

He Man-Chao(何满潮), Fang Zhi-Jie(方志杰), and Zhang Ping(张平) Atomic and electronic structures of montmorillonite in soft rock 2009 Chin. Phys. B 18 2933

[1] Predicting novel atomic structure of the lowest-energy FenP13-n(n=0-13) clusters: A new parameter for characterizing chemical stability
Yuanqi Jiang(蒋元祺), Ping Peng(彭平). Chin. Phys. B, 2023, 32(4): 047102.
[2] High-temperature ferromagnetism and strong π-conjugation feature in two-dimensional manganese tetranitride
Ming Yan(闫明), Zhi-Yuan Xie(谢志远), and Miao Gao(高淼). Chin. Phys. B, 2023, 32(3): 037104.
[3] Bandgap evolution of Mg3N2 under pressure: Experimental and theoretical studies
Gang Wu(吴刚), Lu Wang(王璐), Kuo Bao(包括), Xianli Li(李贤丽), Sheng Wang(王升), and Chunhong Xu(徐春红). Chin. Phys. B, 2022, 31(6): 066205.
[4] Temperature dependence of bismuth structures under high pressure
Xiaobing Fan(范小兵), Shikai Xiang(向士凯), and Lingcang Cai(蔡灵仓). Chin. Phys. B, 2022, 31(5): 056101.
[5] Measurement of electronic structure in van der Waals ferromagnet Fe5-xGeTe2
Kui Huang(黄逵), Zhenxian Li(李政贤), Deping Guo(郭的坪), Haifeng Yang(杨海峰), Yiwei Li(李一苇),Aiji Liang(梁爱基), Fan Wu(吴凡), Lixuan Xu(徐丽璇), Lexian Yang(杨乐仙), Wei Ji(季威),Yanfeng Guo(郭艳峰), Yulin Chen(陈宇林), and Zhongkai Liu(柳仲楷). Chin. Phys. B, 2022, 31(5): 057404.
[6] First principles investigation on Li or Sn codoped hexagonal tungsten bronzes as the near-infrared shielding material
Bo-Shen Zhou(周博深), Hao-Ran Gao(高浩然), Yu-Chen Liu(刘雨辰), Zi-Mu Li(李子木),Yang-Yang Huang(黄阳阳), Fu-Chun Liu(刘福春), and Xiao-Chun Wang(王晓春). Chin. Phys. B, 2022, 31(5): 057804.
[7] Nonlinear optical properties in n-type quadruple δ-doped GaAs quantum wells
Humberto Noverola-Gamas, Luis Manuel Gaggero-Sager, and Outmane Oubram. Chin. Phys. B, 2022, 31(4): 044203.
[8] High-throughput computational material screening of the cycloalkane-based two-dimensional Dion—Jacobson halide perovskites for optoelectronics
Guoqi Zhao(赵国琪), Jiahao Xie(颉家豪), Kun Zhou(周琨), Bangyu Xing(邢邦昱), Xinjiang Wang(王新江), Fuyu Tian(田伏钰), Xin He(贺欣), and Lijun Zhang(张立军). Chin. Phys. B, 2022, 31(3): 037104.
[9] Electronic structure and spin–orbit coupling in ternary transition metal chalcogenides Cu2TlX2 (X = Se, Te)
Na Qin(秦娜), Xian Du(杜宪), Yangyang Lv(吕洋洋), Lu Kang(康璐), Zhongxu Yin(尹中旭), Jingsong Zhou(周景松), Xu Gu(顾旭), Qinqin Zhang(张琴琴), Runzhe Xu(许润哲), Wenxuan Zhao(赵文轩), Yidian Li(李义典), Shuhua Yao(姚淑华), Yanfeng Chen(陈延峰), Zhongkai Liu(柳仲楷), Lexian Yang(杨乐仙), and Yulin Chen(陈宇林). Chin. Phys. B, 2022, 31(3): 037101.
[10] Transition metal anchored on C9N4 as a single-atom catalyst for CO2 hydrogenation: A first-principles study
Jia-Liang Chen(陈嘉亮), Hui-Jia Hu(胡慧佳), and Shi-Hao Wei(韦世豪). Chin. Phys. B, 2022, 31(10): 107306.
[11] Spin and spin-orbit coupling effects in nickel-based superalloys: A first-principles study on Ni3Al doped with Ta/W/Re
Liping Liu(刘立平), Jin Cao(曹晋), Wei Guo(郭伟), and Chongyu Wang(王崇愚). Chin. Phys. B, 2022, 31(1): 016105.
[12] First-principles study of structural and opto-electronic characteristics of ultra-thin amorphous carbon films
Xiao-Yan Liu(刘晓艳), Lei Wang(王磊), and Yi Tong(童祎). Chin. Phys. B, 2022, 31(1): 016102.
[13] Magnetic and electronic properties of two-dimensional metal-organic frameworks TM3(C2NH)12
Zhen Feng(冯振), Yi Li(李依), Yaqiang Ma(马亚强), Yipeng An(安义鹏), and Xianqi Dai(戴宪起). Chin. Phys. B, 2021, 30(9): 097102.
[14] Single boron atom anchored on graphitic carbon nitride nanosheet (B/g-C2N) as a photocatalyst for nitrogen fixation: A first-principles study
Hao-Ran Zhu(祝浩然), Jia-Liang Chen(陈嘉亮), and Shi-Hao Wei(韦世豪). Chin. Phys. B, 2021, 30(8): 083101.
[15] A novel two-dimensional SiO sheet with high-stability, strain tunable electronic structure, and excellent mechanical properties
Shijie Liu(刘世杰) and Hui Du(杜慧). Chin. Phys. B, 2021, 30(7): 076104.
No Suggested Reading articles found!