Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(12): 127701    DOI: 10.1088/1674-1056/acfb79
Special Issue: SPECIAL TOPIC—Post-Moore era: Materials and device physics
SPECIAL TOPIC—Post-Moore era: Materials and device physics Prev   Next  

Tensile stress regulated microstructures and ferroelectric properties of Hf0.5Zr0.5O2 films

Siying Huo(霍思颖)1, Junfeng Zheng(郑俊锋)1, Yuanyang Liu(刘远洋)1, Yushan Li(李育姗)1, Ruiqiang Tao(陶瑞强)1, Xubing Lu(陆旭兵)1,†, and Junming Liu(刘俊明)2
1 Institute for Advanced Materials and Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, China;
2 Laboratory of Solid State Microstructures and Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
Abstract  The discovery of ferroelectricity in HfO2 based materials reactivated the research on ferroelectric memory. However, the complete mechanism underlying its ferroelectricity remains to be fully elucidated. In this study, we conducted a systematic study on the microstructures and ferroelectric properties of Hf0.5Zr0.5O2 (HZO) thin films with various annealing rates in the rapid thermal annealing. It was observed that the HZO thin films with higher annealing rates demonstrate smaller grain size, reduced surface roughness and a higher portion of orthorhombic phase. Moreover, these films exhibited enhanced polarization values and better fatigue cycles compared to those treated with lower annealing rates. The grazing incidence x-ray diffraction measurements revealed the existence of tension stress in the HZO thin films, which was weakened with decreasing annealing rate. Our findings revealed that this internal stress, along with the stress originating from the top/bottom electrode, plays a crucial role in modulating the microstructure and ferroelectric properties of the HZO thin films. By carefully controlling the annealing rate, we could effectively regulate the tension stress within HZO thin films, thus achieving precise control over their ferroelectric properties. This work established a valuable pathway for tailoring the performance of HZO thin films for various applications.
Keywords:  HfO2      ferroelectric materials      tension stress      annealing  
Received:  26 July 2023      Revised:  12 September 2023      Accepted manuscript online:  20 September 2023
PACS:  77.55.D-  
  77.84.-s (Dielectric, piezoelectric, ferroelectric, and antiferroelectric materials)  
  82.80.Pv (Electron spectroscopy (X-ray photoelectron (XPS), Auger electron spectroscopy (AES), etc.))  
  81.40.Ef (Cold working, work hardening; annealing, post-deformation annealing, quenching, tempering recovery, and crystallization)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos.62174059 and 52250281), the Science and Technology Projects of Guangzhou Province of China (Grant No.202201000008), the Guangdong Science and Technology Project-International Cooperation (Grant No.2021A0505030064), and the Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials (Grant No.2020B1212060066).
Corresponding Authors:  Xubing Lu     E-mail:  luxubing@m.scnu.edu.cn

Cite this article: 

Siying Huo(霍思颖), Junfeng Zheng(郑俊锋), Yuanyang Liu(刘远洋), Yushan Li(李育姗),Ruiqiang Tao(陶瑞强), Xubing Lu(陆旭兵), and Junming Liu(刘俊明) Tensile stress regulated microstructures and ferroelectric properties of Hf0.5Zr0.5O2 films 2023 Chin. Phys. B 32 127701

[1] Zagni N, Puglisi F M, Pavan P and Alam M A 2023 Proc. IEEE 111 158
[2] Park J Y, Choe D H, Lee D H, Yu G T, Yang K, Kim S H, Park G H, Nam S G, Lee H J, Jo S, Kuh B J, Ha D, Kim Y, Heo J and Park M H 2022 Small 18 2107575
[4] Zhang B, Li C L, Hong P Z and Huo Z L 2021 Appl. Phys. Lett. 119 022405
[5] Wei Y F, Matzen S, Quinteros C P, Maroutian T, Agnus G, Lecoeur P and Noheda B 2019 NPJ Quantum Mater. 4 62
[6] Schroeder U, Park M H, Mikolajick T and Hwang C S 2022 Nat. Rev. Mater. 7 653
[7] Ali F, Ali T, Lehninger D, Sunbul A, Viegas A, Sachdeva R, Abbas A, Czernohorsky M and Seidel K 2017 Nat. Mater. 16 712
[9] Zhang B, Meng K K, Yang M Y, Edmonds K W, Zhang H, Cai K M, Sheng Y, Zhang N, Ji Y, Zhao J H, Zheng H Z and Wang K Y 2016 Sci. Rep. 6 28458
[10] Fan S Y, Singh S, Xu X H, Park K, Qi Y B, Cheong S W, Vanderbilt D, Rabe K M and Musfeldt J L 2022 NPJ Quantum Mater. 7 32
[11] Richter C, Schenk T, Park M H, Tscharntke F A, Grimley E D, LeBeau J M, Zhou C Z, Fancher C M, Jones J L, Mikolajick T and Schroeder U 2017 Adv. Electron. Mater. 3 1700131
[12] Huan T D, Sharma V, Rossetti G A and Ramprasad R 2014 Phys. Rev. B 90 064111
[13] Ku B, Choi S, Song Y and Choi C 2018 ACS Appl. Mater. Interfaces 10 42666
[16] Lomenzo P D, Takmeel Q, Moghaddam S and Nishida T 2016 Thin Solid Films 615 139
[17] Ho M Y, Gong H, Wilk G D, Busch B W, Green M L, Voyles P M, Muller D A, Bude M, Lin W H, See A, Loomans M E, Lahiri S K and Raisanen P I 2003 J. Appl. Phys. 93 1477
[18] Benediktovitch A, Ulyanenkova T, Keckes J and Ulyanenkov A 2002 Thin Solid Films 418 73
[20] Shi C B, Song Q Z, Wang H, Ma S, Wang C Y, Zhang X, Dou J, Song T L, Chen P W, Zhou H P, Chen Y H, Zhu C, Bai Y and Chen Q 2022 IEEE Electron Device Lett. 43 216
[22] Lee J H, Chou C H, Liao P J, Chang Y K, Huang H H, Lin T Y, Liu Y S, Nien C H, Hou D H, Hou T H and He J 2019 Nat. Commun. 10 815
[24] Lee S J, Kim M J, Lee T Y, Lee T I, Bong J H, Shin S W, Kim S H, Hwang W S and Cho B J 2021 IEEE Trans. Electron Devices 68 523
[1] Impact of annealing temperature on the ferroelectric properties of W/Hf0.5Zr0.5O2/W capacitor
Dao Wang(王岛), Yan Zhang(张岩), Yongbin Guo(郭永斌), Zhenzhen Shang(尚真真), Fangjian Fu(符方健), and Xubing Lu(陆旭兵). Chin. Phys. B, 2023, 32(9): 097701.
[2] Impacts of hydrogen annealing on the carrier lifetimes in p-type 4H-SiC after thermal oxidation
Ruijun Zhang(张锐军), Rongdun Hong(洪荣墩), Jingrui Han(韩景瑞), Hungkit Ting(丁雄杰), Xiguang Li(李锡光), Jiafa Cai(蔡加法), Xiaping Chen(陈厦平), Deyi Fu(傅德颐), Dingqu Lin(林鼎渠), Mingkun Zhang(张明昆), Shaoxiong Wu(吴少雄),Yuning Zhang(张宇宁), Zhengyun Wu(吴正云), and Feng Zhang(张峰). Chin. Phys. B, 2023, 32(6): 067205.
[3] Visualizing interface states in In2Se3–WSe2 monolayer lateral heterostructures
Da Huo(霍达), Yusong Bai(白玉松), Xiaoyu Lin(林笑宇), Jinghao Deng(邓京昊), Zemin Pan(潘泽敏), Chao Zhu(朱超), Chuansheng Liu(刘传胜), and Chendong Zhang(张晨栋). Chin. Phys. B, 2023, 32(5): 056803.
[4] Improved RF power performance of InAlN/GaN HEMT by optimizing rapid thermal annealing process for high-performance low-voltage terminal applications
Yuwei Zhou(周雨威), Minhan Mi(宓珉瀚), Pengfei Wang(王鹏飞), Can Gong(龚灿), Yilin Chen(陈怡霖), Zhihong Chen(陈治宏), Jielong Liu(刘捷龙), Mei Yang(杨眉), Meng Zhang(张濛), Qing Zhu(朱青), Xiaohua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2023, 32(12): 127102.
[5] Ferroelectricity of pristine Hf0.5Zr0.5O2 films fabricated by atomic layer deposition
Luqiu Chen(陈璐秋), Xiaoxu Zhang(张晓旭), Guangdi Feng(冯光迪), Yifei Liu(刘逸飞), Shenglan Hao(郝胜兰), Qiuxiang Zhu(朱秋香), Xiaoyu Feng(冯晓钰), Ke Qu(屈可), Zhenzhong Yang(杨振中), Yuanshen Qi(祁原深), Yachin Ivry, Brahim Dkhil, Bobo Tian(田博博), Junhao Chu(褚君浩), and Chungang Duan(段纯刚). Chin. Phys. B, 2023, 32(10): 108102.
[6] Phosphorus diffusion and activation in fluorine co-implanted germanium after excimer laser annealing
Chen Wang(王尘), Wei-Hang Fan(范伟航), Yi-Hong Xu(许怡红), Yu-Chao Zhang(张宇超), Hui-Chen Fan(范慧晨), Cheng Li(李成), and Song-Yan Cheng(陈松岩). Chin. Phys. B, 2022, 31(9): 098503.
[7] Introducing voids around the interlayer of AlN by high temperature annealing
Jianwei Ben(贲建伟), Jiangliu Luo(罗江流), Zhichen Lin(林之晨), Xiaojuan Sun(孙晓娟), Xinke Liu(刘新科), and Xiaohua Li(黎晓华). Chin. Phys. B, 2022, 31(7): 076104.
[8] Construction and mechanism analysis on nanoscale thermal cloak by in-situ annealing silicon carbide film
Jian Zhang(张健), Hao-Chun Zhang(张昊春), Zi-Liang Huang(黄子亮), Wen-Bo Sun(孙文博), and Yi-Yi Li(李依依). Chin. Phys. B, 2022, 31(1): 014402.
[9] Protection of isolated and active regions in AlGaN/GaN HEMTs using selective laser annealing
Mingchen Hou(侯明辰), Gang Xie(谢刚), Qing Guo(郭清), and Kuang Sheng(盛况). Chin. Phys. B, 2021, 30(9): 097302.
[10] In-situ TEM observation of the evolution of helium bubbles in Mo during He+ irradiation and post-irradiation annealing
Yi-Peng Li(李奕鹏), Guang Ran(冉广), Xin-Yi Liu(刘歆翌), Xi Qiu(邱玺), Qing Han(韩晴), Wen-Jie Li(李文杰), and Yi-Jia Guo(郭熠佳). Chin. Phys. B, 2021, 30(8): 086109.
[11] Impact of O2 post oxidation annealing on the reliability of SiC/SiO2 MOS capacitors
Peng Liu(刘鹏), Ji-Long Hao(郝继龙), Sheng-Kai Wang(王盛凯), Nan-Nan You(尤楠楠), Qin-Yu Hu(胡钦宇), Qian Zhang(张倩), Yun Bai(白云), and Xin-Yu Liu(刘新宇). Chin. Phys. B, 2021, 30(7): 077303.
[12] Fabrication and characterization of Al-Mn superconducting films for applications in TES bolometers
Qing Yu(余晴), Yi-Fei Zhang(张翼飞), Chang-Hao Zhao(赵昌昊), Kai-Yong He(何楷泳), Ru-Tian Huang(黄汝田), Yong-Cheng He(何永成), Xin-Yu Wu(吴歆宇), Jian-She Liu(刘建设), and Wei Chen(陈炜). Chin. Phys. B, 2021, 30(7): 077402.
[13] Effects of post-annealing on crystalline and transport properties of Bi2Te3 thin films
Qi-Xun Guo(郭奇勋), Zhong-Xu Ren(任中旭), Yi-Ya Huang(黄意雅), Zhi-Chao Zheng(郑志超), Xue-Min Wang(王学敏), Wei He(何为), Zhen-Dong Zhu(朱振东), and Jiao Teng(滕蛟). Chin. Phys. B, 2021, 30(6): 067307.
[14] Understanding the synergistic effect of mixed solvent annealing on perovskite film formation
Kun Qian(钱昆), Yu Li(李渝), Jingnan Song(宋静楠), Jazib Ali, Ming Zhang(张明), Lei Zhu(朱磊), Hong Ding(丁虹), Junzhe Zhan(詹俊哲), and Wei Feng(冯威). Chin. Phys. B, 2021, 30(6): 068103.
[15] Characterization and application in XRF of HfO2-coated glass monocapillary based on atomic layer deposition
Yan-Li Li(李艳丽), Ya-Bing Wang(王亚冰), Wei-Er Lu(卢维尔), Xiang-Dong Kong(孔祥东), Li Han(韩立), and Hui-Bin Zhao(赵慧斌). Chin. Phys. B, 2021, 30(5): 050703.
No Suggested Reading articles found!