Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(2): 028504    DOI: 10.1088/1674-1056/ac8cda
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Experiment and simulation on degradation and burnout mechanisms of SiC MOSFET under heavy ion irradiation

Hong Zhang(张鸿)1, Hongxia Guo(郭红霞)1,3,†, Zhifeng Lei(雷志锋)2,‡, Chao Peng(彭超)2, Zhangang Zhang(张战刚)2, Ziwen Chen(陈资文)2, Changhao Sun(孙常皓)1, Yujuan He(何玉娟)2, Fengqi Zhang(张凤祁)3, Xiaoyu Pan(潘霄宇)3, Xiangli Zhong(钟向丽)1, and Xiaoping Ouyang(欧阳晓平)1,3
1 School of Material Science and Engineering, Xiangtan University, Xiangtan 411105, China;
2 Science and Technology on Reliability Physics and Application of Electronic Component Laboratory, China Electronic Product Reliability and Environmental Testing Research Institute, Guangzhou 510610, China;
3 Northwest Institute of Nuclear Technology, Xi'an 710024, China
Abstract  Experiments and simulation studies on 283 MeV I ion induced single event effects of silicon carbide (SiC) metal-oxide-semiconductor field-effect transistors (MOSFETs) were carried out. When the cumulative irradiation fluence of the SiC MOSFET reached 5×106 ion·cm-2, the drain-gate channel current increased under 200 V drain voltage, the drain-gate channel current and the drain-source channel current increased under 350 V drain voltage. The device occurred single event burnout under 800 V drain voltage, resulting in a complete loss of breakdown voltage. Combined with emission microscope, scanning electron microscope and focused ion beam analysis, the device with increased drain-gate channel current and drain-source channel current was found to have drain-gate channel current leakage point and local source metal melt, and the device with single event burnout was found to have local melting of its gate, source, epitaxial layer and substrate. Combining with Monte Carlo simulation and TCAD electrothermal simulation, it was found that the initial area of single event burnout might occur at the source-gate corner or the substrate-epitaxial interface, electric field and current density both affected the lattice temperature peak. The excessive lattice temperature during the irradiation process appeared at the local source contact, which led to the drain-source channel damage. And the excessive electric field appeared in the gate oxide layer, resulting in drain-gate channel damage.
Keywords:  heavy ion      silicon carbide metal-oxide-semiconductor field-effect transistors (SiC MOSFET)      drain-gate channel      drain-source channel      single event burnout      TCAD simulation  
Received:  16 April 2022      Revised:  21 August 2022      Accepted manuscript online:  26 August 2022
PACS:  85.30.Tv (Field effect devices)  
  61.80.Jh (Ion radiation effects)  
  51.50.+v (Electrical properties)  
  84.30.Jc (Power electronics; power supply circuits)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 12075065).
Corresponding Authors:  Hongxia Guo, Zhifeng Lei     E-mail:  guohxnint@126.com;leizf@ceprei.com

Cite this article: 

Hong Zhang(张鸿), Hongxia Guo(郭红霞), Zhifeng Lei(雷志锋), Chao Peng(彭超), Zhangang Zhang(张战刚), Ziwen Chen(陈资文), Changhao Sun(孙常皓), Yujuan He(何玉娟), Fengqi Zhang(张凤祁), Xiaoyu Pan(潘霄宇), Xiangli Zhong(钟向丽), and Xiaoping Ouyang(欧阳晓平) Experiment and simulation on degradation and burnout mechanisms of SiC MOSFET under heavy ion irradiation 2023 Chin. Phys. B 32 028504

[1] Dimitrijev S and Philippe J 2003 Microelectron. Reliab. 43 225
[2] Hudgins J L, Simin G S, Santi S and Khan M A 2003 IEEE Trans. Power Electr. 18 907
[3] Kuboyama S, Kamezawa C, Satoh Y, Hirao T and Ohyama H 2007 IEEE Trans. Nucl. Sci. 54 2379
[4] Mbaye N, Pouget V, Darracq F and Lewis D 2013 Microelectron. Reliab. 53 1315
[5] Johnson R A, Witulski A F, Ball D R, Galloway K F, Sternberg A L, Zhang E, Ryder L D, Reed R A, Schrimpf R D, Kozub J A, Lauenstein J and Javanainen A 2019 IEEE Trans. Nucl. Sci. 66 1694
[6] Martinella C, Ziemann T, Stark R, Tsibizov A, Voss K O and Alia R G 2020 IEEE Trans. Nucl. Sci. 67 1381
[7] Mizuta E, Kuboyama S, Abe H, Iwata Y and Tamura T 2014 IEEE Trans. Nucl. Sci. 61 1924
[8] Javanainen A, Galloway K F, Nicklaw C, Bosser A L, Ferlet-Cavrois V, Lauenstein J M, Pintacuda F, Reed R A, Schrimpf R D, Weller R A and Virtanen A 2017 IEEE Trans. Nucl. Sci. 64 415
[9] Martinella C, Stark R, Ziemann T, Al'ıa R G, Kadi Y, Grossner U and Javanainen A 2019 IEEE Trans. Nucl. Sci. 66 1702
[10] Johnson R A, Witulski A F, Ball D R, Galloway K F, Sternberg A L, Reed R A, Schrimpf R D, Alles M L, Lauenstein J, Javanainen A, Raman A, Chakraborty P S and Arslanbekov R R 2020 IEEE Trans. Nucl. Sci. 67 135
[11] Kuboyama S, Kamezawa C, Satoh Y, Hirao T and Ohyama H 2007 IEEE Trans. Nucl. Sci. 54 2379
[12] Shoji T, Nishida S, Hamada K and Tadano H 2015 Microelectron. Reliab. 55 1517
[13] Shoji T, Nishida S, Hamada K and Tadano H 2015 Jpn. J. Appl. Phys. 53 04EP03
[14] Lauenstein J M, Casey M C, LaBel K A, Topper A D, Wilcox E P, Kim H and Phan A M The NASA Electronic Parts and Packaging Electronics Technology Workshop, June 17-19, 2014, Greenbelt, MD, p. 118
[15] Lauenstein J M, Casey M C, Topper A D, Wilcox E P, Phan A M and LaBel K A IEEE Nuclear & Space Radiation Effects Conference, July 13-17, 2015, Boston, USA, p. 12
[16] Akturk A, Wilkins R, McGarrity J and Gersey B 2017 IEEE Trans. Nucl. Sci. 64 529
[17] Witulski A F, Ball D R, Galloway K F, Javanainen A, Lauenstein J M, Sternberg A L and Schrimpf R D 2018 IEEE Trans. Nucl. Sci. 65 1951
[18] Witulski A F, Arslanbekov R, Raman A, Schrimpf R D, Sternberg A L, Galloway K F, Javanainen A, Grider D, Lichtenwalner D J and Hull B 2018 IEEE Trans. Nucl. Sci. 65 256
[19] Ball D R, Galloway K F, Johnson R A, Alles M L, Sternberg A L, Sierawski B D, Witulski A F, Reed R A, Schrimpf R D, Hutson J M, Javanainen A and Lauenstein J M 2019 IEEE Trans. Nucl. Sci. 67 22
[20] Albadri A M, Schrimpf R D, Galloway K F and Walker D G 2006 Microelectron. Reliab. 46 317
[21] McPherson J A, Kowal P J, Pandey G K, Chow T P, Ji W and Woodworth A A 2018 IEEE Trans. Nucl. Sci. 66 474
[22] Ball D R, Galloway K F, Johnson R A, Alles M L, Sternberg A L, Sierawski B D, Witulski A F, Reed R A, Schrimpf R D, Hutson J M, Javanainen A and Lauenstein J M 2019 IEEE Trans. Nucl. Sci. 67 22
[23] Kuboyama S, Mizuta E, Nakada Y, Shindou H, Michez A, Boch J, Saigné F and Touboul A 2019 IEEE Trans. Nucl. Sci. 66 1688
[24] McPherson J A, Hitchcock C W, Chow T P, Ji W and Woodworth A A 2021 IEEE Trans. Nucl. Sci. 68 651
[25] Niskanen K, Germanicus R C, Michez A, Wrobel F, Boch J, Saigné F and Touboul A D 2021 IEEE Trans. Nucl. Sci. 68 1623
[26] Liu J, Zhang G, Wang B, Li W and Wang J 2019 IEEE Electr. Device Lett. 41 103
[27] Agostinelliae S, Allisonas J, Amakoe K, et al. 2003 Nucl. Instrum. Meth. A 506 250
[28] Allison J, Amako K, Apostolakis J E A, et al. 2006 IEEE Trans. Nucl. Sci. 53 270
[29] Zhang H, Guo H X, Pan X Y, Lei Z F, Zhang, F Q, Gu Z Q, Liu Y T, Ju A A and Ouyang X P 2021 Acta Phys. Sin. 70 68 (in Chinese)
[30] Nilsson O, Mehling H, Horn R, Fricke J and Hofmann D 1997 High Temp.-High Press. 29 7379
[31] Touloukian Y S and Ho C Y 1970 Thermophysical Properties of Matter (New York) pp. 448-450
[32] Zhang H, Guo H X, Zhang F Q, Pan X Y, Liu Y T, Gu Z Q, Ju A A and Ouyang X P 2022 Chin. Phys. B 31 018501
[33] Sentaurus TCAD Tools 2013 Synopsis
[1] Effect of temperature on heavy ion-induced single event transient on 16-nm FinFET inverter chains
Li Cai(蔡莉), Ya-Qing Chi(池雅庆), Bing Ye(叶兵), Yu-Zhu Liu(刘郁竹), Ze He(贺泽), Hai-Bin Wang(王海滨), Qian Sun(孙乾), Rui-Qi Sun(孙瑞琪), Shuai Gao(高帅), Pei-Pei Hu(胡培培), Xiao-Yu Yan(闫晓宇), Zong-Zhen Li(李宗臻), and Jie Liu(刘杰). Chin. Phys. B, 2023, 32(4): 046101.
[2] Strategy to mitigate single event upset in 14-nm CMOS bulk FinFET technology
Dong-Qing Li(李东青), Tian-Qi Liu(刘天奇), Pei-Xiong Zhao(赵培雄), Zhen-Yu Wu(吴振宇), Tie-Shan Wang(王铁山), and Jie Liu(刘杰). Chin. Phys. B, 2022, 31(5): 056106.
[3] An insulated-gate bipolar transistor model based on the finite-volume charge method
Manhong Zhang(张满红) and Wanchen Wu(武万琛). Chin. Phys. B, 2022, 31(12): 128501.
[4] Lattice damage in InGaN induced by swift heavy ion irradiation
Ning Liu(刘宁), Li-Min Zhang(张利民), Xue-Ting Liu(刘雪婷), Shuo Zhang(张硕), Tie-Shan Wang(王铁山), and Hong-Xia Guo(郭红霞). Chin. Phys. B, 2022, 31(10): 106103.
[5] Sensitivity of heavy-ion-induced single event burnout in SiC MOSFET
Hong Zhang(张鸿), Hong-Xia Guo(郭红霞), Feng-Qi Zhang(张凤祁), Xiao-Yu Pan(潘霄宇), Yi-Tian Liu(柳奕天), Zhao-Qiao Gu(顾朝桥), An-An Ju(琚安安), and Xiao-Ping Ouyang(欧阳晓平). Chin. Phys. B, 2022, 31(1): 018501.
[6] Device topological thermal management of β-Ga2O3 Schottky barrier diodes
Yang-Tong Yu(俞扬同), Xue-Qiang Xiang(向学强), Xuan-Ze Zhou(周选择), Kai Zhou(周凯), Guang-Wei Xu(徐光伟), Xiao-Long Zhao(赵晓龙), and Shi-Bing Long(龙世兵). Chin. Phys. B, 2021, 30(6): 067302.
[7] Degradation of β-Ga2O3 Schottky barrier diode under swift heavy ion irradiation
Wen-Si Ai(艾文思), Jie Liu(刘杰), Qian Feng(冯倩), Peng-Fei Zhai(翟鹏飞), Pei-Pei Hu(胡培培), Jian Zeng(曾健), Sheng-Xia Zhang(张胜霞), Zong-Zhen Li(李宗臻), Li Liu(刘丽), Xiao-Yu Yan(闫晓宇), and You-Mei Sun(孙友梅). Chin. Phys. B, 2021, 30(5): 056110.
[8] Investigation of gate oxide traps effect on NAND flash memory by TCAD simulation
He-Kun Zhang(章合坤), Xuan Tian(田璇), Jun-Peng He(何俊鹏), Zhe Song(宋哲), Qian-Qian Yu(蔚倩倩), Liang Li(李靓), Ming Li(李明), Lian-Cheng Zhao(赵连城), Li-Ming Gao(高立明). Chin. Phys. B, 2020, 29(3): 038501.
[9] Investigation of single event effect in 28-nm system-on-chip with multi patterns
Wei-Tao Yang(杨卫涛), Yong-Hong Li(李永宏)†, Ya-Xin Guo(郭亚鑫), Hao-Yu Zhao(赵浩昱), Yang Li(李洋), Pei Li(李培), Chao-Hui He(贺朝会), Gang Guo(郭刚), Jie Liu(刘杰), Sheng-Sheng Yang(杨生胜), and Heng An(安恒). Chin. Phys. B, 2020, 29(10): 108504.
[10] Research on SEE mitigation techniques using back junction and p+ buffer layer in domestic non-DTI SiGe HBTs by TCAD
Jia-Nan Wei(魏佳男), Chao-Hui He(贺朝会), Pei Li(李培), Yong-Hong Li(李永宏). Chin. Phys. B, 2019, 28(6): 068503.
[11] Vibrational modes in La2Zr2O7 pyrochlore irradiated with disparate electrical energy losses
Sheng-Xia Zhang(张胜霞), Jie Liu(刘杰), Hua Xie(谢华), Li-Jun Xu(徐丽君), Pei-Pei Hu(胡培培), Jian Zeng(曾健), Zong-Zhen Li(李宗臻), Li Liu(刘丽), Wen-Si Ai(艾文思), Peng-Fei Zhai(翟鹏飞). Chin. Phys. B, 2019, 28(11): 116102.
[12] Heavy ion induced upset errors in 90-nm 64 Mb NOR-type floating-gate Flash memory
Jin-Shun Bi(毕津顺), Kai Xi(习凯), Bo Li(李博), Hai-Bin Wang(王海滨), Lan-Long Ji(季兰龙), Jin Li(李金), Ming Liu(刘明). Chin. Phys. B, 2018, 27(9): 098501.
[13] Influences of total ionizing dose on single event effect sensitivity in floating gate cells
Ya-Nan Yin(殷亚楠), Jie Liu(刘杰), Qing-Gang Ji(姬庆刚), Pei-Xiong Zhao(赵培雄), Tian-Qi Liu(刘天奇), Bing Ye(叶兵), Jie Luo(罗捷), You-Mei Sun(孙友梅), Ming-Dong Hou(侯明东). Chin. Phys. B, 2018, 27(8): 086103.
[14] Structural modification in swift heavy ion irradiated muscovite mica
Sheng-Xia Zhang(张胜霞), Jie Liu(刘杰), Jian Zeng(曾健), Pei-Pei Hu(胡培培), Peng-Fei Zhai(翟鹏飞). Chin. Phys. B, 2017, 26(10): 106102.
[15] Impact of neutron-induced displacement damage on the single event latchup sensitivity of bulk CMOS SRAM
Xiao-Yu Pan(潘霄宇), Hong-Xia Guo(郭红霞), Yin-Hong Luo(罗尹虹), Feng-Qi Zhang(张凤祁), Li-Li Ding(丁李利), Jia-Nan Wei(魏佳男), Wen Zhao(赵雯). Chin. Phys. B, 2017, 26(1): 018501.
No Suggested Reading articles found!