Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(2): 028503    DOI: 10.1088/1674-1056/ac7cd5

High performance SiC trench-type MOSFET with an integrated MOS-channel diode

Jie Wei(魏杰)1, Qinfeng Jiang(姜钦峰)1, Xiaorong Luo(罗小蓉)1,†, Junyue Huang(黄俊岳)1, Kemeng Yang(杨可萌)1, Zhen Ma(马臻)1, Jian Fang(方健)1, and Fei Yang(杨霏)2
1 School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, China;
2 Global Energy Interconnection Research Institute, Beijing 102209, China
Abstract  A novel SiC double-trench metal-oxide-semiconductor field effect transistor (MOSFET) with integrated MOS-channel diode is proposed and investigated by Sentaurus TCAD simulation. The new SiC MOSFET has a trench gate and a stepped-trench source, and features an integrated MOS-channel diode on the top sidewall of the source trench (MT MOS). In the reverse conduction state, the MOS-channel diode turns on firstly to prevent the internal parasitic body diode being activated, and thus reduces the turn-on voltage $V_{\rm F}$ and suppresses the bipolar degradation phenomena. The $V_{\rm F}$ of 1.70 V (@$I_{\rm ds} = -100$ A/cm$^{2}$) for the SiC MT MOS is 38.2% lower than that of SiC double-trench MOSFET (DT MOS). Meanwhile, the reverse recovery charge $Q_{\rm rr}$ of the MT MOS is 58.7% lower than that of the DT MOS at $I_{\rm load} = 700$ A/cm$^{2}$, and thus the reverse recovery loss is reduced. Furthermore, owing to the modulation effect induced by the double trenches, the MT MOS preserves the same superior forward conduction and blocking performance as those of DT MOS, with 22.9% and 18.2% improvement on breakdown voltage and $R_{\rm ON,sp}$ compared to the trench gate MOSFET with planar integrated SBD (ST MOS).
Keywords:  SiC MOSFET      bipolar degradation      MOS-channel diode      reverse recovery  
Received:  15 February 2022      Revised:  24 June 2022      Accepted manuscript online:  29 June 2022
PACS:  85.30.De (Semiconductor-device characterization, design, and modeling)  
  85.30.Tv (Field effect devices)  
  73.40.Qv (Metal-insulator-semiconductor structures (including semiconductor-to-insulator))  
  51.50.+v (Electrical properties)  
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2016YFB0400502).
Corresponding Authors:  Xiaorong Luo     E-mail:

Cite this article: 

Jie Wei(魏杰), Qinfeng Jiang(姜钦峰), Xiaorong Luo(罗小蓉), Junyue Huang(黄俊岳), Kemeng Yang(杨可萌), Zhen Ma(马臻), Jian Fang(方健), and Fei Yang(杨霏) High performance SiC trench-type MOSFET with an integrated MOS-channel diode 2023 Chin. Phys. B 32 028503

[1] Saito K, Miyoshi T, Kawase D, et al. 2018 IEEE Trans. Electron Dev. 65 1063
[2] Han Z, Bai Y, Li C, et al. 2021 IEEE Trans. Electron Dev. 68 192
[3] Li X, Tong X, Huang Alex Q, et al. 2018 IEEE Trans. Electron Dev. 65 347
[4] Skowronski M and Ha S 2006 J. Appl. Phys. 99 11101
[5] Agarwal A, Fatima H, Haney S, et al. 2007 IEEE Electron. Dev. Lett. 28 578
[6] Agarwal A K, Casady J B, Rowland L B, et al. 1997 IEEE Electron. Dev. Lett. 18 586
[7] Tan J, Cooper J A and Melloch M R 1998 IEEE Electron. Dev. Lett. 19 487
[8] Nakamura T, Nakano Y, Aketa M, et al. 2011 Proceeding of the International Electron Devices Meeting, December 5-7, 2011, Washington, DC, USA, p. 26.5.1
[9] Zhou X, Pang H, Jia Y, et al. 2020 IEEE Trans. Electron Dev. 67 582
[10] Wang Y, Tian K, Hao Y, et al. 2016 IEEE Electron. Dev. Lett. 37 633
[11] Chen X M, Shi B B, Li X, et al. 2021 Chin. Phys. B 30 048504
[12] Ran S L, Huang Z Y, Hu S D, et al. 2022 Chin. Phys. B 31 018504
[13] Liu X Y, Hao J L, You N N, et al. 2020 Chin. Phys. B 29 037301
[14] Chung G Y, Tin C C, Williams J R, et al. 2001 IEEE Electron. Dev. Lett. 22 176
[15] Peterset D, Siemieniec R, Aichinger T, et al. 2017 Proceeding of the 29th International Symposium on Power Semiconductor Devices and IC's, May 28-June 1, 2017, Sapporo, Japan, p. 239
[16] Saha A and Cooper J A 2007 IEEE Trans. Electron Dev. 54 2786
[17] Zhou X, Yue R, Zhang J, et al. 2017 IEEE Trans. Electron Dev. 64 4568
[18] Lide D R 1969 CRC Handbook of Chemistry and Physics 86th edn. (Boca Raton, FL: CRC Press)
[19] S Tsukimoto, K Nitta, T Sakai, et al. 2004 J. Electron. Mater. 33 460
[20] S Tsukimoto, T Sakai, T Onishi, et al. 2005 J. Electron. Mater. 34 1310
[21] L G Fursin, J H Zhao and M Weiner. 2001 Electron. Lett. 37 1092
[22] N A Papanicolaou, A Edwards, M V Rao, et al. 1998 Appl. Phys. Lett. 73 2009
[1] Experiment and simulation on degradation and burnout mechanisms of SiC MOSFET under heavy ion irradiation
Hong Zhang(张鸿), Hongxia Guo(郭红霞), Zhifeng Lei(雷志锋), Chao Peng(彭超), Zhangang Zhang(张战刚), Ziwen Chen(陈资文), Changhao Sun(孙常皓), Yujuan He(何玉娟), Fengqi Zhang(张凤祁), Xiaoyu Pan(潘霄宇), Xiangli Zhong(钟向丽), and Xiaoping Ouyang(欧阳晓平). Chin. Phys. B, 2023, 32(2): 028504.
[2] Sensitivity of heavy-ion-induced single event burnout in SiC MOSFET
Hong Zhang(张鸿), Hong-Xia Guo(郭红霞), Feng-Qi Zhang(张凤祁), Xiao-Yu Pan(潘霄宇), Yi-Tian Liu(柳奕天), Zhao-Qiao Gu(顾朝桥), An-An Ju(琚安安), and Xiao-Ping Ouyang(欧阳晓平). Chin. Phys. B, 2022, 31(1): 018501.
[3] A 3D SiC MOSFET with poly-silicon/SiC heterojunction diode
Sheng-Long Ran(冉胜龙), Zhi-Yong Huang(黄智勇), Sheng-Dong Hu(胡盛东), Han Yang(杨晗), Jie Jiang(江洁), and Du Zhou(周读). Chin. Phys. B, 2022, 31(1): 018504.
[4] Characteristics and mechanisms of subthreshold voltage hysteresis in 4H-SiC MOSFETs
Xi-Ming Chen(陈喜明), Bang-Bing Shi(石帮兵), Xuan Li(李轩), Huai-Yun Fan(范怀云), Chen-Zhan Li(李诚瞻), Xiao-Chuan Deng(邓小川), Hai-Hui Luo(罗海辉), Yu-Dong Wu(吴煜东), and Bo Zhang(张波). Chin. Phys. B, 2021, 30(4): 048504.
[5] A gate enhanced power U-shaped MOSFET integrated with a Schottky rectifier
Wang Ying(王颖), Jiao Wen-Li(焦文利), Hu Hai-Fan (胡海帆), Liu Yun-Tao(刘云涛), and Cao Fei(曹菲) . Chin. Phys. B, 2012, 21(5): 056104.
[6] A novel planar vertical double-diffused metal-oxide- semiconductor field-effect transistor with inhomogeneous floating islands
Ren Min(任敏), Li Ze-Hong(李泽宏), Liu Xiao-Long(刘小龙), Xie Jia-Xiong(谢加雄), Deng Guang-Min(邓光敏), and Zhang Bo(张波) . Chin. Phys. B, 2011, 20(12): 128501.
No Suggested Reading articles found!