CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES |
Prev
Next
|
|
|
Influences of total ionizing dose on single event effect sensitivity in floating gate cells |
Ya-Nan Yin(殷亚楠)1,2, Jie Liu(刘杰)1, Qing-Gang Ji(姬庆刚)1,2, Pei-Xiong Zhao(赵培雄)1,2, Tian-Qi Liu(刘天奇)1,2,3, Bing Ye(叶兵)1, Jie Luo(罗捷)1,2,3, You-Mei Sun(孙友梅)1, Ming-Dong Hou(侯明东)1 |
1 Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China; 2 University of Chinese Academy of Sciences, Beijing 100049, China; 3 Lanzhou University, Lanzhou 730000, China |
|
|
Abstract The influences of total ionizing dose (TID) on the single event effect (SEE) sensitivity of 34-nm and 25-nm NAND flash memories are investigated in this paper. The increase in the cross section of heavy-ion single event upset (SEU) in memories that have ever been exposed to TID is observed, which is attributed to the combination of the threshold voltage shifts induced by γ-rays and heavy ions. Retention errors in floating gate (FG) cells after heavy ion irradiation are observed. Moreover, the cross section of retention error increases if the memory has ever been exposed to TID. This effect is more evident at a low linear energy transfer (LET) value. The underlying mechanism is identified as the combination of the defects induced by γ-rays and heavy ions, which increases the possibility to constitute a multi-trap assisted tunneling (m-TAT) path across the tunnel oxide.
|
Received: 26 February 2018
Revised: 04 May 2018
Accepted manuscript online:
|
PACS:
|
61.82.Fk
|
(Semiconductors)
|
|
61.80.Jh
|
(Ion radiation effects)
|
|
61.80.Ed
|
(γ-ray effects)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11690041, 11675233, U1532261, and 11505243). |
Corresponding Authors:
Jie Liu
E-mail: j.liu@impcas.ac.cn
|
Cite this article:
Ya-Nan Yin(殷亚楠), Jie Liu(刘杰), Qing-Gang Ji(姬庆刚), Pei-Xiong Zhao(赵培雄), Tian-Qi Liu(刘天奇), Bing Ye(叶兵), Jie Luo(罗捷), You-Mei Sun(孙友梅), Ming-Dong Hou(侯明东) Influences of total ionizing dose on single event effect sensitivity in floating gate cells 2018 Chin. Phys. B 27 086103
|
[1] |
Oldham T R, Friendlich M, Sanders A B, Seidleck C M, Kim H S, Berg M D and LaBel K A 2009 IEEE Radiation Effects Data Workshop, July 23, 2009, Québec Hilton, Canada, p. 114
|
[2] |
Barth J L, Dyer C S and Stassinopoulos E G 2003 IEEE Trans. Nucl. Sci. 50 466
|
[3] |
Schwartz H R, Nichols D K and Johnston A H 1997 IEEE Trans. Nucl. Sci. 44 2315
|
[4] |
Nguyen D N, Guertin S M, Swift G M and Johnston A H 1999 IEEE Trans. Nucl. Sci. 46 1744
|
[5] |
Bagatin M, Gerardin S, Paccagnella A, and Ferlet-Cavrois V 2013 IEEE Trans. Nucl. Sci. 60 2675
|
[6] |
Irom F, Nguyen D N, and Allen G R 2013 IEEE Radiation Effects Data Workshop, July 8-12, 2013, San Francisco, USA, p. 1
|
[7] |
Bagatin M, Gerardin S, Paccagnella A, Visconti A, Virtanen A, Kettunen H, Costantino A, Ferlet-Cavrois V and Zadeh A 2017 IEEE Trans. Nucl. Sci. 64 464
|
[8] |
Oldham T, Ladbury R, Friendlich M, Kim H, Berg M, Irwin T, Seidleck C and LaBel K A 2006 IEEE Trans. Nucl. Sci. 53 3217
|
[9] |
Irom F, Nguyen D N, Underwood M L and Virtanen A 2010 IEEE Trans. Nucl. Sci. 57 3329
|
[10] |
He C H and Li Y H 2007 Chin. Phys. 16 2773
|
[11] |
He C H, Geng B, Yang H L, Chen X H, Li G Z and Wang Y P 2003 Acta Phys. Sin. 52 2235 (in Chinese)
|
[12] |
He B P, Guo H X, Gong J C, Wang G Z, Luo Y H and Li Y H 2004 Acta Phys. Sin. 53 3125 (in Chinese)
|
[13] |
Bagatin M, Gerardin S, Paccagnella A, Cellere G, Visconti A and Bonanomi M 2010 IEEE Trans. Nucl. Sci. 57 3407
|
[14] |
Edmonds L D, Irom F and Allen G R 2017 IEEE Trans. Nucl. Sci. 64 2046
|
[15] |
Bagatin M, Gerardin S, Paccagnella A, Visconti A, Beltrami S, Bertuccio M and Czeppel L 2011 IEEE Trans. Nucl. Sci. 58 2824
|
[16] |
Oldham T R, Chen D, Friendlich M, Carts M A, Seidleck C M and LaBel K A 2011 IEEE Trans. Nucl. Sci. 58 2904
|
[17] |
Oldham T R, Dakai C, Friendlich M R and LaBel K A 2012 IEEE Trans. Nucl. Sci. 59 3011
|
[18] |
Larcher L, Cellere G, Paccagnella A, Chimenton A, Candelori A and Modelli A 2003 IEEE Trans. Nucl. Sci. 50 2176
|
[19] |
Cellere G, Larcher L, Paccagnella A, Visconti A and Bonanomi M 2005 IEEE Trans. Nucl. Sci. 52 2144
|
[20] |
Bagatin M, Gerardin S and Paccagnella A 2012 IEEE Trans. Nucl. Sci. 59 2785
|
[21] |
Cellere G, Paccagnella A, Visconti A, Bonanomi M, Caprara P and Lora S 2004 IEEE Trans. Nucl. Sci. 51 3753
|
[22] |
Cellere G, Paccagnella A, Visconti A and Bonanomi A 2006 IEEE Trans. Nucl. Sci. 53 3291
|
[23] |
Cellere G, Paccagnella A, Visconti A, Bonanomi M and Candelori A 2004 IEEE Trans. Nucl. Sci. 51 3304
|
[24] |
Butt N Z and Alam M 2008 IEEE International Reliability Physics Symposium, April 27-May 1, 2008, Phoenix, USA, p. 547
|
[25] |
Guertin S M, Nguyen D N and Patterson J D 2006 IEEE Trans. Nucl. Sci. 53 3518
|
[26] |
Ceschia M, Paccagnella A, Sandrin S, Ghidini G, Wyss J, Lavale M and Flament O 2000 IEEE Trans. Nucl. Sci. 47 566
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|