Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(7): 078701    DOI: 10.1088/1674-1056/ac5399
Special Issue: TOPICAL REVIEW—Laser and plasma assisted synthesis of advanced nanomaterials in liquids
SPECIAL TOPIC—Laser and plasma assisted synthesis of advanced nanomaterials in liquids Prev   Next  

Up/down-conversion luminescence of monoclinic Gd2O3:Er3+ nanoparticles prepared by laser ablation in liquid

Hua-Wei Deng(邓华威) and Di-Hu Chen(陈弟虎)
State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou 510275, China
Abstract  Multifunctional luminescent materials are attracting attention nowadays. In this work, monoclinic Gd2O3:Er3+ nanoparticles, which possess up-conversion luminescence and down-conversion luminescence properties, were successfully synthesized by laser ablation in liquid (LAL) technique. Up-conversion luminescence and down-conversion luminescence of monoclinic Gd2O3:Er3+ nanoparticles were got under the excitation of 980 nm and 379 nm, respectively. In addition, tunable luminescence was got. Furthermore, the cytotoxicity of the nanoparticles is low and the fluorescence of the nanoparticles in cell is also strong enough. The results indicate that the Gd2O3:Er3+ nanoparticles synthesized by LAL technique are promising candidates for bio-imaging or other fields that require controllable fluorescence.
Keywords:  Gd2O3      nanoparticles      luminescence      laser ablation in liquid  
Received:  05 September 2021      Revised:  03 February 2022      Accepted manuscript online:  10 February 2022
PACS:  87.64.kv (Fluorescence)  
  78.67.Bf (Nanocrystals, nanoparticles, and nanoclusters)  
  52.38.Mf (Laser ablation)  
  77.84.Bw (Elements, oxides, nitrides, borides, carbides, chalcogenides, etc.)  
Corresponding Authors:  Di-Hu Chen     E-mail:  stscdh@mail.sysu.edu.cn

Cite this article: 

Hua-Wei Deng(邓华威) and Di-Hu Chen(陈弟虎) Up/down-conversion luminescence of monoclinic Gd2O3:Er3+ nanoparticles prepared by laser ablation in liquid 2022 Chin. Phys. B 31 078701

[1] Nexha A, Carvajal J J, Pujol M C, Diaz F and Aguilo M 2021 Nanoscale 13 7913
[2] Chen W, Xie Y, Wang M and Li C 2020 Front. Chem. 8 596658
[3] Yang Y X, Xu Z, Zhao S L, Liang Z Q, Zhu W and Zhang J J 2017 Chin. Phys. B 26 087801
[4] Da-Gang W, Ya-Xun Z, Xun-Si W, Shi-Xun D, Xiang S, Fei-Fei C and Sen W 2010 Acta Phys. Sin. 59 6256 (in Chinese)
[5] Karimov D N, Demina P A, Koshelev A V, Rocheva V V, Sokovikov A V, Generalova A N, Zubov V P, Khaydukov E V, Koval'chuk M V and Panchenko V Y 2020 Nanotech. Russ. 15 655
[6] Nadort A, Zhao J and Goldys E M 2016 Nanoscale 8 13099
[7] Pan M, Liao W M, Yin S Y, Sun S S and Su C Y 2018 Chem. Rev. 118 8889
[8] Bodman S E and Butler S J 2021 Chem. Sci. 12 2716
[9] Wu X F, Zhan S P, Han J B and Liu Y X 2021 Nano Lett. 21 272
[10] Shi J J, Liu B, Wang Q G, Tang H L, Wu F, Li D Z, Zhao H Y, Wang Z S, Deng W, Xu X D and Xu J 2018 Chin. Phys. B 27 077802
[11] Tamrakar R K, Upadhyay K and Sahu M 2017 J. Alloys Compd. 699 898
[12] Gayathri T, Kumar R A, Dhilipkumaran S, Jayasankar C K, Saravanan P and Devanand B 2019 J. Mater. Sci-Mater. El. 30 6860
[13] Park S J, Jang H W, Park J Y, Chung J W, Yang H K and Moon B K 2019 Ceram. Int. 45 5958
[14] Liu Z, Deng H and Chen D 2019 Ceram. Int. 45 13235
[15] Liu P, Wang F and Yang B 2020 Solid State Sci. 102 106165
[16] Cheng W J, Liang G, Wu P, Zhao S H, Jia T Q, Sun Z R and Zhang S A 2018 Chin. Phys. B 27 123201
[17] Yu L, Hong F, Wang Y, Xu H, Liu G, Dong X, Wang J and Yu W 2020 J. Lumin. 222 117155
[18] Zhang X Z, Li Y J, Hu R, Xu Z Y, Qiu J B, Yang Z W and Song Z G 2018 J. Rare Earth. 36 231
[19] Qiu J P, Liang R F, Peng X, Li Y H, Liu L X, Yin J, Qu J L and Niu H B 2015 Acta Phys. Sin. 64 048701 (in Chinese)
[20] Tamrakar R K, Bisen D P, Upadhyay K, Sahu I P and Sahu M 2016 RSC Adv. 6 92360
[21] Liu X B, Lin D Y, Wu Q Q, Yan W, Luo T, Yang Z G and Qu J L 2018 Acta Phys. Sin. 67 178701 (in Chinese)
[22] Wang S F, He D W, Wang Y S, Hu Y, Duan J H, Fu M and Wang W S 2014 Chin. Phys. B 23 097803
[23] Omidvar A, RashidianVaziri M, Jaleh B, Shabestari N P and Noroozi M 2016 Chin. Phys. B 25 118102
[24] Lei J M, Xu X L, Liu L, Yin N Q and Zhu L X 2012 Chin. Phys. Lett. 29 097803
[25] Hou K, Zhu Y B and Qiao L 2015 Chin. Phys. B 24 127703
[26] Torresan V, Forrer D, Guadagnini A, Badocco D, Pastore P, Casarin M, Selloni A, Coral D, Ceolin M, Fernandez van Raap M B, Busato A, Marzola P, Spinelli A E and Amendola V 2020 ACS Nano 14 12840
[27] Yan B, Chen L, Chen S, Li M, Yin Y M and Zhou J N 2019 Acta Phys. Sin. 68 218701 (in Chinese)
[28] Yin J C, Wu H N, Wang X, Tian L, Yang R L, Liu L Z and Shao Y Z 2020 Appl. Phys. Lett. 116 163702
[29] Yin J, Zhang Y, Ma D, Yang R, Xu F, Wu H, He C, Liu L, Dong J and Shao Y 2019 ACS Appl. Mater. Inter. 11 41069
[30] Tamrakar R K, Bisen D P, Upadhyay K and Sahu I P 2016 J. Alloys Compd. 655 423
[31] Tamrakar R K, Bisen D P, Upadhyay K and Sahu I P 2016 Radiat. Measur. 84 41
[32] Amendola V, Amans D, Ishikawa Y, Koshizaki N, Scire S, Compagnini G, Reichenberger S and Barcikowski S 2020 Chem-Eur. J. 26 9206
[33] Zhang D, Gokce B and Barcikowski S 2017 Chem. Rev. 117 3990
[34] Xiao J, Liu P, Wang C X and Yang G W 2017 Prog. Mater. Sci. 87 140
[35] Tan D, Sharafudeen K N, Yue Y and Qiu J 2016 Prog. Mater. Sci. 76 154
[36] Zhang D S, Liu J and Liang C H 2017 Sci. China-Phys. Mech. 60 074201
[37] Zeng H, Du X-W, Singh S C, Kulinich S A, Yang S, He J and Cai W 2012 Adv. Funct. Mater. 22 1333
[38] Sun X, Wang J, Yin Y, Wang H, Li S, Liu H, Mao J and Du X 2020 Chem-Eur. J. 26 2793
[39] Tarasenka N, Shustava E, Butsen A, Kuchmizhak A A, Pashayan S, Kulinich S A and Tarasenko N 2021 Appl. Surf. Sci. 554 149570
[40] Tarasenka N, Stupak A, Tarasenko N, Chakrabarti S and Mariotti D 2017 Chemphyschem 18 1074
[41] Tarasenka N, Butsen A, Pankov V, Velusamy T, Mariotti D and Tarasenko N 2017 Nano-Structures & Nano-Objects 12 210
[42] Pan B Y, Zhang L Y, Dou S X and Wang P Y 2010 Chin. Phys. Lett. 27 078701
[43] Barshutina M N and Barchanski A 2017 Meas. Tech. 60 216
[44] Luo N Q, Yang C, Tian X M, Xiao J, Liu J, Chen F, Zhang D H, Xu D K, Zhang Y L, Yang G W, Chen D H and Li L 2014 J. Mater. Chem. B 2 5891
[45] Liu J, Tian X, Chen H, Shao Y, Yang G and Chen D 2015 Appl. Surf. Sci. 348 60
[46] Solé J G, Bausá L E and Jaque D 2005 An Introduction to the Optical Spectroscopy of Inorganic Solids (Chichester:John Wiley & Sons) pp. 181-183
[47] Dexter D L 1953 J. Chem. Phys. 21 836
[48] Dexter D L and Schulman J H 1954 J. Chem. Phys. 22 1063
[49] Auzel F 2004 Chem. Rev. 104 139
[50] Wegh R T, Donker H, van Loef E V D, Oskam K D and Meijerink A 2000 J. Lumin. 87-9 1017
[51] Kim T H, Kim D J, Jang W Y, Moon A, Lim K S and Lee M 2011 Jpn. J. Appl. Phys. 50 06GH11
[52] Wei W, Zhang Y, Chen R, Goggi J, Ren N, Huang L, Bhakoo K K, Sun H and Tan T T Y 2014 Chem. Mater. 26 5183
[53] Vetrone F, Boyer J C, Capobianco J A, Speghini A and Bettinelli M 2003 Chem. Mater. 15 2737
[54] Priya R, Pandey O P and Dhoble S J 2021 Opt. Laser Technol. 135 106663
[55] Kuznetsova Y A and Zatsepin A F 2015 Journal of Physics:Conference Series 643 012057
[56] Zhang W W, Zhang W P, Xie P B, Yin M, Chen H T, Jing L, Zhang Y S, Lou L R and Xia S D 2003 J. Colloid Interf. Sci. 262 588
[57] Huang A, Yang Z, Yu C, Qiu J and Song Z 2017 J. Am. Ceram. Soc. 100 4994
[58] do Nascimento J P C, Sales A J M, Sousa D G, da Silva M A S, Moreira S G C, Pavani K, Soares M J, Graça M P F, Suresh Kumar J and Sombra A S B 2016 RSC Adv. 6 68160
[59] Tian L, Xu Z, Zhao S, Cui Y, Liang Z, Zhang J and Xu X 2014 Materials 7 7289
[60] Pollnau M, Gamelin D R, Luthi S R, Gudel H U and Hehlen M P 2000 Phys. Rev. B 61 3337
[1] Reconstruction and functionalization of aerogels by controlling mesoscopic nucleation to greatly enhance macroscopic performance
Chen-Lu Jiao(焦晨璐), Guang-Wei Shao(邵光伟), Yu-Yue Chen(陈宇岳), and Xiang-Yang Liu(刘向阳). Chin. Phys. B, 2023, 32(3): 038103.
[2] Thermally enhanced photoluminescence and temperature sensing properties of Sc2W3O12:Eu3+ phosphors
Yu-De Niu(牛毓德), Yu-Zhen Wang(汪玉珍), Kai-Ming Zhu(朱凯明), Wang-Gui Ye(叶王贵), Zhe Feng(冯喆), Hui Liu(柳挥), Xin Yi(易鑫), Yi-Huan Wang(王怡欢), and Xuan-Yi Yuan(袁轩一). Chin. Phys. B, 2023, 32(2): 028703.
[3] Growth behaviors and emission properties of Co-deposited MAPbI3 ultrathin films on MoS2
Siwen You(游思雯), Ziyi Shao(邵子依), Xiao Guo(郭晓), Junjie Jiang(蒋俊杰), Jinxin Liu(刘金鑫), Kai Wang(王凯), Mingjun Li(李明君), Fangping Ouyang(欧阳方平), Chuyun Deng(邓楚芸), Fei Song(宋飞), Jiatao Sun(孙家涛), and Han Huang(黄寒). Chin. Phys. B, 2023, 32(1): 017901.
[4] Electroluminescence explored internal behavior of carriers in InGaAsP single-junction solar cell
Xue-Fei Li(李雪飞), Wen-Xian Yang(杨文献), Jun-Hua Long(龙军华), Ming Tan(谭明), Shan Jin(金山), Dong-Ying Wu(吴栋颖), Yuan-Yuan Wu(吴渊渊), and Shu-Long Lu(陆书龙). Chin. Phys. B, 2023, 32(1): 017801.
[5] Two-dimensional Sb cluster superlattice on Si substrate fabricated by a two-step method
Runxiao Zhang(张润潇), Zi Liu(刘姿), Xin Hu(胡昕), Kun Xie(谢鹍), Xinyue Li(李新月), Yumin Xia(夏玉敏), and Shengyong Qin(秦胜勇). Chin. Phys. B, 2022, 31(8): 086801.
[6] Enhanced photoluminescence of monolayer MoS2 on stepped gold structure
Yu-Chun Liu(刘玉春), Xin Tan(谭欣), Tian-Ci Shen(沈天赐), and Fu-Xing Gu(谷付星). Chin. Phys. B, 2022, 31(8): 087803.
[7] SERS activity of carbon nanotubes modified by silver nanoparticles with different particle sizes
Xiao-Lei Zhang(张晓蕾), Jie Zhang(张洁), Yuan Luo(罗元), and Jia Ran(冉佳). Chin. Phys. B, 2022, 31(7): 077401.
[8] Laser fragmentation in liquid synthesis of novel palladium-sulfur compound nanoparticles as efficient electrocatalysts for hydrogen evolution reaction
Guo-Shuai Fu(付国帅), Hong-Zhi Gao(高宏志), Guo-Wei Yang(杨国伟), Peng Yu(于鹏), and Pu Liu(刘璞). Chin. Phys. B, 2022, 31(7): 077901.
[9] Onion-structured transition metal dichalcogenide nanoparticles by laser fabrication in liquids and atmospheres
Le Zhou(周乐), Hongwen Zhang(张洪文), Qian Zhao(赵倩), and Weiping Cai(蔡伟平). Chin. Phys. B, 2022, 31(7): 076106.
[10] Exploration of structural, optical, and photoluminescent properties of (1-x)NiCo2O4/xPbS nanocomposites for optoelectronic applications
Zein K Heiba, Mohamed Bakr Mohamed, Noura M Farag, and Ali Badawi. Chin. Phys. B, 2022, 31(6): 067801.
[11] Effect of different catalysts and growth temperature on the photoluminescence properties of zinc silicate nanostructures grown via vapor-liquid-solid method
Ghfoor Muhammad, Imran Murtaza, Rehan Abid, and Naeem Ahmad. Chin. Phys. B, 2022, 31(5): 057801.
[12] Exciton luminescence and many-body effect of monolayer WS2 at room temperature
Jian-Min Wu(吴建民), Li-Hui Li(黎立辉), Wei-Hao Zheng(郑玮豪), Bi-Yuan Zheng(郑弼元), Zhe-Yuan Xu(徐哲元), Xue-Hong Zhang(张学红), Chen-Guang Zhu(朱晨光), Kun Wu(吴琨), Chi Zhang(张弛), Ying Jiang(蒋英),Xiao-Li Zhu(朱小莉), and Xiu-Juan Zhuang(庄秀娟). Chin. Phys. B, 2022, 31(5): 057803.
[13] Transmembrane transport of multicomponent liposome-nanoparticles into giant vesicles
Hui-Fang Wang(王慧芳), Chun-Rong Li(李春蓉), Min-Na Sun(孙敏娜), Jun-Xing Pan(潘俊星), and Jin-Jun Zhang(张进军). Chin. Phys. B, 2022, 31(4): 048703.
[14] Stability and luminescence properties of CsPbBr3/CdSe/Al core-shell quantum dots
Heng Yao(姚恒), Anjiang Lu(陆安江), Zhongchen Bai(白忠臣), Jinguo Jiang(蒋劲国), and Shuijie Qin(秦水介). Chin. Phys. B, 2022, 31(4): 046106.
[15] Influence of various shapes of nanoparticles on unsteady stagnation-point flow of Cu-H2O nanofluid on a flat surface in a porous medium: A stability analysis
Astick Banerjee, Krishnendu Bhattacharyya, Sanat Kumar Mahato, and Ali J. Chamkha. Chin. Phys. B, 2022, 31(4): 044701.
No Suggested Reading articles found!