Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(1): 010505    DOI: 10.1088/1674-1056/abb30a
GENERAL Prev   Next  

Synchronization mechanism of clapping rhythms in mutual interacting individuals

Shi-Lan Su(苏世兰)1, Jing-Hua Xiao(肖井华)1, Wei-Qing Liu(刘维清)2,†, and Ye Wu(吴晔)3,4
1 School of Science, Beijing University of Posts and Telecommunications, Beijing 100876, China; 2 School of Science, Jiangxi University of Science and Technology, Ganzhou 341000, China; 3 Computational Communication Research Center, Beijing Normal University, Zhuhai 519087, China; 4 School of Journalism and Communication, Beijing Normal University, Beijing 100875, China
Abstract  In recent years, clapping synchronization between individuals has been widely studied as one of the typical synchronization phenomena. In this paper, we aim to reveal the synchronization mechanism of clapping interactions by observing two individuals' clapping rhythms in a series of experiments. We find that the two synchronizing clapping rhythm series exhibit long-range cross-correlations (LRCCs); that is, the interaction of clapping rhythms can be seen as a strong-anticipation process. Previous studies have demonstrated that the interactions in local timescales or global matching in statistical structures of fluctuation in long timescales can be sources of the strong-anticipation process. However, the origin of the strong anticipation process often appears elusive in many complex systems. Here, we find that the clapping synchronization process may result from the local interaction between two clapping individuals and may result from the more global coordination between two clapping individuals. We introduce two stochastic models for mutually interacting clapping individuals that generate the LRCCs and prove theoretically that the generation of clapping synchronization process needs to consider both local interaction and global matching. This study provides a statistical framework for studying the internal synchronization mechanism of other complex systems. Our theoretical model can also be applied to study the dynamics of other complex systems with the LRCCs, including finance, transportation, and climate.
Keywords:  synchronization mechanism      clapping rhythm      numerical simulation  
Received:  12 July 2020      Revised:  10 August 2020      Accepted manuscript online:  27 August 2020
PACS:  05.45.Xt (Synchronization; coupled oscillators)  
  05.45.Tp (Time series analysis)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11765008, 71731002, and 11775034) and the Jiangxi Provincial Natural Science Foundation, China (Grant No. 20202ACBL201004).
Corresponding Authors:  Corresponding author. E-mail:   

Cite this article: 

Shi-Lan Su(苏世兰), Jing-Hua Xiao(肖井华), Wei-Qing Liu(刘维清), and Ye Wu(吴晔) Synchronization mechanism of clapping rhythms in mutual interacting individuals 2021 Chin. Phys. B 30 010505

1 Néda Z, Ravasz E, Brechet Y, Vicsek T and Barabàsi A L Nature 403 849
2 Néda Z, Ravasz E, Vicsek T, Brechet Y and Barabàsi A L 2000 Phys. Rev. E 61 6987
3 Néda Z, Nikitin A and Vicsek T Physica A 321 238
4 Nikitin A, Néda Z and Vicsek T 2001 Phys. Rev. Lett. 87 024101
5 Horvàt S and Néda Z Physica D 256 43
6 Xenides D, Vlachos D S and Simos T E 2008 J. Stat. Mech.-Theory Exp. 2008 P07017
7 Li D, Liu K, Sun Y and Han M 2008 Sci. China Ser. F-Inf. Sci 51 449
8 Li D, Liu K, Sun Y and Han M IEEE Trans. Circuits Syst. II-Express Briefs 56 504
9 Mann R P, Faria J, Sumpter D J T and Krause J 2013 J. R. Soc. Interface 10 20130466
10 Thomson M, Murphy K and Lukeman R 2018 Sci. Rep. 8 808
11 Su S, Xiao J, Liu W and Wu Y 2020 Europhys. Lett. 129 60004
12 Dubois D M2003 Anticipatory Behavior in Adaptive Learning Systems (Vol. 2684)(Berlin, Heidelberg: Springer) pp. 110-132
13 Sivaprakasam S, Shahverdiev E M, Spencer P S and Shore K A 2001 Phys. Rev. Lett 87 154101
14 Toral R, Masoller C, Mirasso C R, Ciszak M and Calvo O 2003 Physica A 325 192
15 Podobnik B, Fu D F, Stanley H E and Ivanov P C 2007 Eur. Phys. J. B 56 47
16 Hennig H 2014 Proc. Natl. Acad. Sci. USA 111 12974
17 Podobnik B, Horvatic D, Petersen A M and Stanley H E 2009 Proc. Natl. Acad. Sci. USA 106 22079
18 Xu N, Shang P and Kamae S 2010 Nonlinear Dyn. 61 207
19 Vassoler R T and Zebende G F 2012 Physica A 391 2438
20 Deligni\`eres D and Marmelat V 2014 Physica A 394 47
21 Stephen D G and Dixon J A 2011 Chaos Solitons Fractals 44 160
22 Voss H U 2000 Phys. Rev. E 61 5115
23 Stephen D G, Stepp N, Dixon J A and Turvey M T 2008 Physica A 387 5271
24 Benoit C E, Bella S D, Farrugia N, Obrig H, Mainka S and Kotz S A 2014 Front. Hum. Neurosci. 8 494
25 Thaut M H, Miltner R, Lange H W, Hurt C P and Hoemberg V 2001 Mov. Disord. 14 808
26 Delignieres D, Ramdani S, Lemoine L, Torre K, Fortes M and Ninot G 2006 J. Math. Psychol. 50 525
27 Almurad Z M H, Roume C and Deligni\`eres D 2017 Hum. Mov. Sci. 54 125
28 Coey C A, Washburn A, Hassebrock J and Richardson M J 2016 Neurosci. Lett. 616 204
29 Roume C, Almurad Z M H, Scotti M, Ezzina S, Blain H and Deligni\`eres D 2018 Physica A 503 1131
30 Torre K and Deligni\`eres D 2008 Biol. Cybern. 99 159
31 Deligni\`eres D and Marmelat V2013 Progress in Motor Control. Advances in Experimental Medicine and Biology(New York: Springer) pp. 127-148
32 Diniz A, Wijnants M L, Torre K, Barreiros J, Crato N, Bosman A M T, Hasselman F, Cox R F A, Orden G C V and Deligni\`eres D 2011 Hum. Mov. Sci. 30 889
33 Peng C K, Havlin S, Stanley H E and Goldberger A L 1995 Chaos 5 82
34 Havlin S, Amaral L A N, Ashkenazy Y, Goldberger A L, Ivanov P C, Peng C K and Stanley H E 1999 Physica A 274 99
35 Mates J 1994 Biol. Cybern 70 463
36 Jiong R and Zheng S Y 2010 Chin. Phys. B 19 070513
37 He D, Shi P and Stone L 2003 Phys. Rev. E 67 027201
[1] Effect of pressure and space between electrodes on the deposition of SiNxHy films in a capacitively coupled plasma reactor
Meryem Grari, CifAllah Zoheir, Yasser Yousfi, and Abdelhak Benbrik. Chin. Phys. B, 2021, 30(5): 055205.
[2] Numerical simulation of super-continuum laser propagation in turbulent atmosphere
Ya-Qian Li(李雅倩), Wen-Yue Zhu (朱文越), and Xian-Mei Qian(钱仙妹). Chin. Phys. B, 2021, 30(3): 034201.
[3] Optical properties of several ternary nanostructures
Xiao-Long Tang(唐小龙), Xin-Lu Cheng(程新路), Hua-Liang Cao(曹华亮), and Hua-Dong Zeng(曾华东). Chin. Phys. B, 2021, 30(1): 017803.
[4] Numerical simulation on ionic wind in circular channels
Gui-Wen Zhang(张桂文), Jue-Kuan Yang(杨决宽), and Xiao-Hui Lin(林晓辉). Chin. Phys. B, 2021, 30(1): 014701.
[5] Numerical research on effect of overlap ratio on thermal-stress behaviors of the high-speed laser cladding coating
Xiaoxi Qiao(乔小溪), Tongling Xia(夏同领), and Ping Chen(陈平). Chin. Phys. B, 2021, 30(1): 018104.
[6] A new car-following model with driver's anticipation effect of traffic interruption probability
Guang-Han Peng(彭光含). Chin. Phys. B, 2020, 29(8): 084501.
[7] Droplets breakup via a splitting microchannel
Wei Gao(高崴), Cheng Yu(于程), Feng Yao(姚峰). Chin. Phys. B, 2020, 29(5): 054702.
[8] Electron beam irradiation on novel coronavirus (COVID-19): A Monte-Carlo simulation
Guobao Feng(封国宝), Lu Liu(刘璐), Wanzhao Cui(崔万照), Fang Wang(王芳). Chin. Phys. B, 2020, 29(4): 048703.
[9] Multi-bubble motion behavior of uniform magnetic field based on phase field model
Chang-Sheng Zhu(朱昶胜), Zhen Hu(胡震), Kai-Ming Wang(王凯明). Chin. Phys. B, 2020, 29(3): 034702.
[10] Interface coupling effects of weakly nonlinear Rayleigh-Taylor instability with double interfaces
Zhiyuan Li(李志远), Lifeng Wang(王立锋), Junfeng Wu(吴俊峰), Wenhua Ye(叶文华). Chin. Phys. B, 2020, 29(3): 034704.
[11] The second Hopf bifurcation in lid-driven square cavity
Tao Wang(王涛), Tiegang Liu(刘铁钢), Zheng Wang(王正). Chin. Phys. B, 2020, 29(3): 030503.
[12] A new cellular automaton model accounting for stochasticity in traffic flow induced by heterogeneity in driving behavior
Xiaoyong Ni(倪晓勇), Hong Huang(黄弘). Chin. Phys. B, 2019, 28(9): 098901.
[13] Direct numerical simulation on relevance of fluctuating velocities and drag reduction in turbulent channel flow with spanwise space-dependent electromagnetic force
Dai-Wen Jiang(江代文), Hui Zhang(张辉), Bao-Chun Fan(范宝春), An-Hua Wang(王安华). Chin. Phys. B, 2019, 28(5): 054701.
[14] Numerical simulation on dynamic behaviors of bubbles flowing through bifurcate T-junction in microfluidic device
Liang-Yu Wu(吴梁玉), Ling-Bo Liu(刘凌波), Xiao-Tian Han(韩笑天), Qian-Wen Li(李倩文), Wei-Bo Yang(杨卫波). Chin. Phys. B, 2019, 28(10): 104702.
[15] Phase field simulation of single bubble behavior under an electric field
Chang-Sheng Zhu(朱昶胜), Dan Han(韩丹), Sheng Xu(徐升). Chin. Phys. B, 2018, 27(9): 094704.
No Suggested Reading articles found!