Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(6): 068101    DOI: 10.1088/1674-1056/23/6/068101

Near field enhancement and absorption properties of the double cylindrical microcavities based on triple-band metamaterial absorber

Heng Hanga b, Yang Lia
a Department of Physics, Nanjing Normal University, Nanjing 210097, China;
b Center for Analysis and Testing, Nanjing Normal University, Nanjing 210097, China
Abstract  We numerically study the near field enhancement and absorption properties inside the double cylindrical microcavities based on triple-band metamaterial absorber. The compact single unit cell consists of concentric gold rings each with a gold disk in the center, and a metallic ground plane separated by a dielectric layer. At the normal incidence of electromagnetic radiation, the obtained reflection spectra show that the resonance frequencies of the double microcavities are 16.65 THz, 20.65 THz, and 25.65THz, respectively. We also calculate the values of contrast C (C=1-Rmin), which can reach 95%, 97%, and 95% at the corresponding frequencies by optimizing the geometry parameters of structure. Moreover, we demonstrate that the multilayer structure with subwavelength electromagnetic confinement allows 104~105-fold enhancement of the electromagnetic energy density inside the double cavities, which contains the most energy of the incoming electromagnetic radiation. Moreover, the proposed structure will be insensitive to the polarization of the incident wave due to the symmetry of the double cylindrical microcavities. The proposed optical metamaterial is a promising candidate as an absorbing element in scientific and technical applications because of its extreme confinement, multiband absorptions, and polarization insensitivity.
Keywords:  metamaterial      metal-semiconductor-metal      microcavity      absorption  
Received:  12 November 2013      Revised:  16 December 2013      Published:  15 June 2014
PACS:  81.05.Xj (Metamaterials for chiral, bianisotropic and other complex media)  
  42.55.Sa (Microcavity and microdisk lasers)  
  73.40.Sx (Metal-semiconductor-metal structures)  
  78.67.Pt (Multilayers; superlattices; photonic structures; metamaterials)  
Corresponding Authors:  Heng Hang     E-mail:

Cite this article: 

Heng Hang, Yang Li Near field enhancement and absorption properties of the double cylindrical microcavities based on triple-band metamaterial absorber 2014 Chin. Phys. B 23 068101

[1] Jiang Z H, Yun S, Toor F, Werner D H and Mayer T S 2011 ACS Nano. 5 4641
[2] Shi X Z, Shen C M, Wang D K, Li C, Tian Y, Xu Z C, Wang C M and Gao H J 2011 Chin. Phys. B 20 076103
[3] Du C L, Du C J, You Y M, Zhu Y, Jin S L, He C J and Shi D N 2011 Appl. Opt. 50 4922
[4] Nishijima Y, Nigorinuma H, Rosa L and Juodkazis S 2012 Opt. Mater. Express 2 1367
[5] Schwarz I, Livneh N and Rapaport R 2012 Opt. Express 20 426
[6] He M D, Ma W G and Wang X J 2013 Chin. Phys. B 22 114201
[7] Christensen J, Martin-Moreno L and Garcia-Vidal F J 2010 Phys. Rev. B 81 174104
[8] Lai W C, Chakravarty S, Zou Y and Chen R T 2012 Opt. Lett. 37 1208
[9] Peng P, Huang H, Hu A, Gerlich A P and Zhou Y N 2012 J. Mater. Chem. 22 12997
[10] He X J, Wang Y, Mei J S, Gui T L and Yin J H 2012 Chin. Phys. B 21 044101
[11] Rakhmanov A L, Yampol'skii V A, Fan J A, Capasso F and Nori F 2010 Phys. Rev. B 81 07501
[12] Kocaman S, Aras M S, Hsieh P, McMillan J F, Biris C G, Panoiu N C, Yu M B, Kwong D L, Stein A and Wong C W 2011 Nat. Photon. 5 499
[13] Zimmermann B, Muller T, Meineke J, Esslinger T and Moritz H 2011 New J. Phys. 13 043007
[14] Yuk J M, Park J and Ercius P 2012 Science 336 61
[15] Barnes W L, Dereux A and Ebbesen T W 2003 Nature 424 824
[16] Liu H and Lalanne P 2008 Nature 452 728
[17] Hibbins A P and Sambles J R 2004 Phys. Rev. Lett. 92 147401
[18] Farahani J N, Eisler H J, WPohl D, Pavius M, Fluckiger P, Gasser P and Hecht B 2007 Nanotechnology 18 125506
[19] Curto A G, Volpe G, Taminiau T H, Kreuzer M P, Quidant R and Van-Hulst N F 2010 Science 329 930
[20] Fevillet-Palma C, Todorow Y, Vasanelli A and Sirtori C 2013 Sci. Rep. 3 1361
[21] Fevillet-Palma C, Todorov Y, Steed R, Vasanelli A, Biasiol G, Sorba L and Sirtori C 2012 Opt. Express 20 29121
[22] Liao P F and Wokaun A 1982 J. Chem. Phys. 76 751
[23] Shen X P, Cui T J, Zhao J, Ma H F, Jiang W X and Li H 2011 Opt. Express. 19 9401
[24] Ding P, Liang E J, Zhang L, Zhou Q and Yuan Y X 2009 Phys. Rev. E 79 016604
[1] Analysis of dark soliton generation in the microcavity with mode-interaction
Xin Xu(徐昕), Xueying Jin(金雪莹), Jie Cheng(程杰), Haoran Gao(高浩然), Yang Lu(陆洋), and Liandong Yu(于连栋). Chin. Phys. B, 2021, 30(2): 024210.
[2] Broadband absorption enhancement with ultrathin MoS2 film in the visible regime
Jun Wu(吴俊). Chin. Phys. B, 2021, 30(2): 024208.
[3] Tunable dual-band terahertz graphene absorber with guided mode resonances
Jun Wu(吴俊), Xia-Yin Liu(刘夏吟), and Zhe Huang(黄喆). Chin. Phys. B, 2021, 30(1): 014202.
[4] Dispersion of exciton-polariton based on ZnO/MgZnO quantum wells at room temperature
Huying Zheng(郑湖颖), Zhiyang Chen(陈智阳), Hai Zhu(朱海), Ziying Tang(汤梓荧), Yaqi Wang(王亚琪), Haiyuan Wei(韦海园), Chongxin Shan(单崇新). Chin. Phys. B, 2020, 29(9): 097302.
[5] Optical properties of core/shell spherical quantum dots
Shuo Li(李硕), Lei Shi(石磊), Zu-Wei Yan(闫祖威). Chin. Phys. B, 2020, 29(9): 097802.
[6] Multi-functional vanadium dioxide integrated metamaterial for terahertz wave manipulation
Jian-Xing Zhao(赵建行), Jian-Lin Song(宋建林), Yao Zhou(周姚), Rui-Long Zhao(赵瑞龙), Yi-Chao Liu(刘艺超), Jian-Hong Zhou(周见红). Chin. Phys. B, 2020, 29(9): 094205.
[7] Active metasurfaces for manipulatable terahertz technology
Jing-Yuan Wu(吴静远), Xiao-Feng Xu(徐晓峰), Lian-Fu Wei(韦联福). Chin. Phys. B, 2020, 29(9): 094202.
[8] Hyperbolic metamaterials for high-efficiency generation of circularly polarized Airy beams
Lin Chen(陈林), Huihui Li(李会会), Weiming Hao(郝玮鸣), Xiang Yin(殷祥), Jian Wang(王健). Chin. Phys. B, 2020, 29(8): 084210.
[9] Optical absorption in asymmetrical Gaussian potential quantum dot under the application of an electric field
Xue-Chao Li(李学超), Chun-Bao Ye(叶纯宝), Juan Gao(高娟), Bing Wang(王兵). Chin. Phys. B, 2020, 29(8): 087302.
[10] Discontinuous transition between Zundel and Eigen for H5O2+
Endong Wang(王恩栋), Beien Zhu(朱倍恩), Yi Gao(高嶷). Chin. Phys. B, 2020, 29(8): 083101.
[11] Responsive mechanism and coordination mode effect of a bipyridine-based two-photon fluorescent probe for zinc ion
Han Zhang(张瀚), Zhe Shao(邵哲), Ke Zhao(赵珂). Chin. Phys. B, 2020, 29(8): 083304.
[12] High performance terahertz anisotropic absorption in graphene-black phosphorus heterostructure
Jinming Liang(梁晋铭), Jiangtao Lei(雷江涛), Yun Wang(汪云), Yan Ding(丁燕), Yun Shen(沈云), Xiaohua Deng(邓晓华). Chin. Phys. B, 2020, 29(8): 087805.
[13] Exciton optical absorption in asymmetric ZnO/ZnMgO double quantum wells with mixed phases
Zhi-Qiang Han(韩智强), Li-Ying Song(宋丽颖), Yu-Hai Zan(昝宇海), Shi-Liang Ban(班士良). Chin. Phys. B, 2020, 29(7): 077104.
[14] Effect of deposition temperature on SrFe12O19@carbonyl iron core-shell composites as high-performance microwave absorbers
Yuan Liu(刘渊), Rong Li(李茸), Ying Jia(贾瑛), Zhen-Xin He(何祯鑫). Chin. Phys. B, 2020, 29(6): 067701.
[15] Extraordinary propagation characteristics of electromagnetic waves in one-dimensional anti-PT-symmetric ring optical waveguide network
Jie-Feng Xu(许杰锋), Xiang-Bo Yang(杨湘波), Hao-Han Chen(陈浩瀚), Zhan-Hong Lin(林展鸿). Chin. Phys. B, 2020, 29(6): 064201.
No Suggested Reading articles found!