Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(6): 067803    DOI: 10.1088/1674-1056/23/6/067803
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

N vacancy, substitutional O, and Al defects in the bandgap of composition-tunable nonstoichiometric AlN powder

Zhang Dian (张电), Liu Fa-Min (刘发民), Cai Lu-Gang (蔡鲁刚)
Department of Physics, School of Physics and Nuclear Energy Engineering, Beihang University, Beijing 100191, China
Abstract  AlN powders are prepared by direct nitridation via Al liquid and vapor phases in mixed atmospheres of N2 and NH3 with different NH3/N2 ratios. The reaction analysis reveals that NH3 acts as catalyst for N2 dissociation and the transportations of N, O, and Al in the liquid phase are different from those in the vapor phase. Accordingly, the products are Al-rich and composition-tunable nonstoichiometric AlN in which N, O, and Al content values change with nitridation atmosphere and temperature, leading to the variation of the relevant defect concentration. Therefore, the AlN powders exhibit prominent absorption bands around 5.30, 3.40, and 1.50 eV, which are tentatively assigned to VN, ON donors, and AlN acceptor respectively. Furthermore, a new donor named [VN-ON] complex is predicted at 4.40 eV within the 5.90 eV bandgap. It is demonstrated that the optical spectra of nonstoichiometric AlN are preferable to the nominal stoichimometric one for the identification of the defects energy level.
Keywords:  Ⅲ-V semiconductors      defects      optical properties      luminescence  
Received:  12 December 2013      Revised:  19 January 2014      Accepted manuscript online: 
PACS:  78.30.Fs (III-V and II-VI semiconductors)  
  68.55.Ln (Defects and impurities: doping, implantation, distribution, concentration, etc.)  
  78.40.-q (Absorption and reflection spectra: visible and ultraviolet)  
  78.55.-m (Photoluminescence, properties and materials)  
Corresponding Authors:  Liu Fa-Min     E-mail:  fmliu@buaa.edu.cn

Cite this article: 

Zhang Dian (张电), Liu Fa-Min (刘发民), Cai Lu-Gang (蔡鲁刚) N vacancy, substitutional O, and Al defects in the bandgap of composition-tunable nonstoichiometric AlN powder 2014 Chin. Phys. B 23 067803

[1] Ruterana P 2003 Nitride Semiconductors Handbook on Materials and Devices (Weinheim: John Wiley & Sons) pp. 171-174
[2] Nakamura S 2000 Introduction to Nitride Semiconductor Blue Lasers and Light Emitting Diodes (New York: CRC Press) pp. 12-15
[3] Liu B, Zhang S, Yin J Y, Zhang X W, Dun S B, Feng Z H and Cai S J 2013 Chin. Phys. B 22 057105
[4] Taniyasu Y, Kasu M and Makimoto T 2006 Nature 441 325
[5] Ren F, Hao Z B, Hu J N, Zhang C and Luo Y 2010 Chin. Phys. B 19 116801
[6] Taniyasu Y and Kasu M 2011 Appl. Phys. Lett. 98 131911
[7] Georgieva A K, Ciechonski R R and Fosberg U 2009 Cryst. Growth Des. 9 880
[8] Wu B, Noveski V, Zhang H, Schlesser R, Mahajan S, Beaudoin S and Sitar Z 2005 Cryst. Growth Des. 5 1491
[9] Shatskiy A, Borzdov Y M, Yamazaki D, Litasov K D, Katsura T and Palyanov Yuri N 2010 Cryst. Growth Des. 10 2563
[10] Bickermann M, Epelbaum B M, Filip O, Heimann P, Nagata S and Winnacker A 2010 Phys. Status Solidi C 7 1743
[11] Hartmann C, Wollweber J, Seiz C, Albrecht M and Fornari R 2008 J. Cryst. Growth 310 930
[12] Somiya S, Aldinger F, Claussen N, Spriggs R M, Uchino K, Koumoto K and Kaneno M 2003 Handbook of Advanced Ceramics, Volume II: Processing and Their Applications (Kidlington: Elsevier Academic Press) pp. 3-9
[13] Iriarte G F, Rodríguez J G and Calle F 2010 Mater. Res. Bull. 45 1039
[14] Pietranico S, Pommier S, Lefebvre S, Khatir Z and Bontemps S 2009 Int. J. Fatigue 31 1911
[15] Eriguchi K, Hiratsuka T, Murakami H, Kumagai Y and Koukitu A 2008 J. Cryst. Growth 310 4016
[16] Siwiec J, Sokolowska A, Olszyna A, Dwilinski R, Kaminska M and Konwerska-Hrabowska J 1998 Nanostruct. Mater. 10 625
[17] Yao Z Q, Li Y Q, Tang J X, Zhang W J and Lee S T 2008 Diam. Relat. Mater. 17 1785
[18] Sun J, Wu J, Ling H, Shi W, Ying Z F and Li F M 2001 Phys. Lett. A 280 381
[19] Senawiratne J 2006 "Structural and Optical Characterization of Group III-Nitride Compound Semiconductors" (Ph. D. dissertation) (Atlanta: Georgia State University)
[20] Strassburg M, Senawiratna J, Dietz N, Haboeck U, Hoffmann A, Noveski V, Dalmau R, Schlesser R and Sitar Z 2004 J. Appl. Phys. 96 5870
[21] Bichmann M, Münch A, Epelbaum B M, Filip O, Heimann P, Nagata S and Winnacker A 2008 J. Appl. Phys. 103 0735221
[22] Sitar Z, Moody B, Craft S, Schlesser R, Dalmau R, Xie J, Mita S, Rice T, Tweedy J, LeBeau J, Hussey L, Collazo R, Gaddy B and Irving D 2012 4th International Symposium on Growth of III-Nitrides, July 16-19, 2012, St. Petersburg, Russian, p. 16
[23] Nappé J C, Grosseau Ph, Benabdesselam M, Beauvy M and Guilhot B 2009 Proceedings of the 11th ECERS Conference, Krakow, p. 1105
[24] Honma T, Kuroki Y, Okamoto T, Takata M, Kanechika Y, Azuma M and Taniguchi H 2008 Ceram. Int. 34 943
[25] Sikalidis C 2011 Advances in Ceramics-Characterization, Raw Materials, Processing, Properties, Degradation and Healing (Rijeka: InTech) pp. 59-66
[26] Lü H M, Chen G D, Yan G J and Ye H G 2007 Chin. Phys. 16 2814
[27] Li X F, Kong L N, Shen L H, Yang J H, Gao M, Hu T J, Wu X T and Li M 2013 Mater. Res. Bull. 48 3310
[28] Shi S C, Chen C F, Chattoadhyay S, Chen K H, Trinkler L and Berzina B 2006 Appl. Phys. Lett. 89 1631271
[29] Bellucci S, Popov A I, Balasubramanian C, Cinque G, Marcelli A, Karbovnyk I, Savchyn V and Krutyak N 2007 Radiat. Meas. 42 708
[30] Qiao Z J, Chen G D, Ye H G, Wu Y L, Niu H B and Zhu Y Z 2012 Chin. Phys. B 21 087101
[31] Kim H W, Kebede M A and Kim H S 2009 Appl. Surf. Sci. 7221
[32] Zhang D, Liu F M, Cai L G, Liu X Q and Li Y 2013 J. Alloys Compd. 547 91
[33] Kimura I, Ichiya K, Ishii M and Hotta N 1989 J. Mater. Sci. Lett. 8 303
[34] Chang A J, Rhee S W and Baik S 1995 J. Mater. Sci. 30 1180
[35] Hiroki H, Yasushi K, Keiichi E and Yonenaga I 2007 J. Appl. Phys. 102 0261031
[36] Chen L 2005 "Optical Characterization of Gallium Nitride, Silicon Carbide and Aluminum Nitride" (Ph. D. dissertation) (Tempe: Arizona State University)
[37] Chen L, Skromme B J, Dalmau R F, Schlesser R, Sitar Z, Chen C, Yang J, Sun W, Khan M A, Nakarmi M L, Lin J Y and Jiang H X 2004 Appl. Phys. Lett. 85 4334
[38] Silveira E, Freitas J A Jr and Glembocki O J 2005 Phys. Rev. B 71 0412011
[39] Prinz G i M, Ladenburger A, Feneberg M, Thonke K, Sauer R, Taniyasu Y, Kasu M and Makimoto T 2006 Superlattices Microstruct. 40 513
[40] Tang X, Hossain F, Wongchotigul K and Spencer M G 1998 Appl. Phys. Lett. 72 1501
[41] Bastek B, Bertram F, Christen J, Hempel T, Dadgar A and Krost A 2009 Appl. Phys. Lett. 95 0321061
[42] Bickermannl M, Epelbaum B M, Filip O, Heimann P, Nagata S and Winnacker A 2009 Phys. Status Solidi B 246 1181
[43] Senawiratne J, Strassburg M, Dietz N, Haboeck U, Hoffmann A, Noveski V, Dalmau R, Schlesser R and Sitar Z 2005 Phys. Status Solidi C 2 2774
[44] Uedono A, Ishibashi S, Keller S, Moe C, Cantu P, Katona T M, Kamber D S, Wu Y, Letts E, Newman S A, Nakamura S, Speck J S, Mishra U K, DenBaars S P, Onuma T and Chichibu S F 2009 J. Appl. Phys. 105 0545011
[45] Mäki J. M, Makkonen I, Tuomisto F, Karjalainen A, Suihkonen S, Räisänen J, Chemekova T Y and Makarov Y N 2011 Phys. Rev. B 84 0812041
[46] Mattila T and Nieminen R M 1996 Phys. Rev. B 54 16676
[47] Stampfl C and van de Walle C G 2002 Phys. Rev. B 65 1552121
[1] Advancing thermoelectrics by suppressing deep-level defects in Pb-doped AgCrSe2 alloys
Yadong Wang(王亚东), Fujie Zhang(张富界), Xuri Rao(饶旭日), Haoran Feng(冯皓然),Liwei Lin(林黎蔚), Ding Ren(任丁), Bo Liu(刘波), and Ran Ang(昂然). Chin. Phys. B, 2023, 32(4): 047202.
[2] Molecular dynamics study of interactions between edge dislocation and irradiation-induced defects in Fe–10Ni–20Cr alloy
Tao-Wen Xiong(熊涛文), Xiao-Ping Chen(陈小平), Ye-Ping Lin(林也平), Xin-Fu He(贺新福), Wen Yang(杨文), Wang-Yu Hu(胡望宇), Fei Gao(高飞), and Hui-Qiu Deng(邓辉球). Chin. Phys. B, 2023, 32(2): 020206.
[3] Thermally enhanced photoluminescence and temperature sensing properties of Sc2W3O12:Eu3+ phosphors
Yu-De Niu(牛毓德), Yu-Zhen Wang(汪玉珍), Kai-Ming Zhu(朱凯明), Wang-Gui Ye(叶王贵), Zhe Feng(冯喆), Hui Liu(柳挥), Xin Yi(易鑫), Yi-Huan Wang(王怡欢), and Xuan-Yi Yuan(袁轩一). Chin. Phys. B, 2023, 32(2): 028703.
[4] Electroluminescence explored internal behavior of carriers in InGaAsP single-junction solar cell
Xue-Fei Li(李雪飞), Wen-Xian Yang(杨文献), Jun-Hua Long(龙军华), Ming Tan(谭明), Shan Jin(金山), Dong-Ying Wu(吴栋颖), Yuan-Yuan Wu(吴渊渊), and Shu-Long Lu(陆书龙). Chin. Phys. B, 2023, 32(1): 017801.
[5] Optical and electrical properties of BaSnO3 and In2O3 mixed transparent conductive films deposited by filtered cathodic vacuum arc technique at room temperature
Jian-Ke Yao(姚建可) and Wen-Sen Zhong(钟文森). Chin. Phys. B, 2023, 32(1): 018101.
[6] Growth behaviors and emission properties of Co-deposited MAPbI3 ultrathin films on MoS2
Siwen You(游思雯), Ziyi Shao(邵子依), Xiao Guo(郭晓), Junjie Jiang(蒋俊杰), Jinxin Liu(刘金鑫), Kai Wang(王凯), Mingjun Li(李明君), Fangping Ouyang(欧阳方平), Chuyun Deng(邓楚芸), Fei Song(宋飞), Jiatao Sun(孙家涛), and Han Huang(黄寒). Chin. Phys. B, 2023, 32(1): 017901.
[7] Effects of oxygen concentration and irradiation defects on the oxidation corrosion of body-centered-cubic iron surfaces: A first-principles study
Zhiqiang Ye(叶志强), Yawei Lei(雷亚威), Jingdan Zhang(张静丹), Yange Zhang(张艳革), Xiangyan Li(李祥艳), Yichun Xu(许依春), Xuebang Wu(吴学邦), C. S. Liu(刘长松), Ting Hao(郝汀), and Zhiguang Wang(王志光). Chin. Phys. B, 2022, 31(8): 086802.
[8] Enhanced photoluminescence of monolayer MoS2 on stepped gold structure
Yu-Chun Liu(刘玉春), Xin Tan(谭欣), Tian-Ci Shen(沈天赐), and Fu-Xing Gu(谷付星). Chin. Phys. B, 2022, 31(8): 087803.
[9] Up/down-conversion luminescence of monoclinic Gd2O3:Er3+ nanoparticles prepared by laser ablation in liquid
Hua-Wei Deng(邓华威) and Di-Hu Chen(陈弟虎). Chin. Phys. B, 2022, 31(7): 078701.
[10] Direct visualization of structural defects in 2D semiconductors
Yutuo Guo(郭玉拓), Qinqin Wang(王琴琴), Xiaomei Li(李晓梅), Zheng Wei(魏争), Lu Li(李璐), Yalin Peng(彭雅琳), Wei Yang(杨威), Rong Yang(杨蓉), Dongxia Shi(时东霞), Xuedong Bai(白雪冬), Luojun Du(杜罗军), and Guangyu Zhang(张广宇). Chin. Phys. B, 2022, 31(7): 076105.
[11] Exploration of structural, optical, and photoluminescent properties of (1-x)NiCo2O4/xPbS nanocomposites for optoelectronic applications
Zein K Heiba, Mohamed Bakr Mohamed, Noura M Farag, and Ali Badawi. Chin. Phys. B, 2022, 31(6): 067801.
[12] Exciton luminescence and many-body effect of monolayer WS2 at room temperature
Jian-Min Wu(吴建民), Li-Hui Li(黎立辉), Wei-Hao Zheng(郑玮豪), Bi-Yuan Zheng(郑弼元), Zhe-Yuan Xu(徐哲元), Xue-Hong Zhang(张学红), Chen-Guang Zhu(朱晨光), Kun Wu(吴琨), Chi Zhang(张弛), Ying Jiang(蒋英),Xiao-Li Zhu(朱小莉), and Xiu-Juan Zhuang(庄秀娟). Chin. Phys. B, 2022, 31(5): 057803.
[13] Effect of different catalysts and growth temperature on the photoluminescence properties of zinc silicate nanostructures grown via vapor-liquid-solid method
Ghfoor Muhammad, Imran Murtaza, Rehan Abid, and Naeem Ahmad. Chin. Phys. B, 2022, 31(5): 057801.
[14] Tunable electronic properties of GaS-SnS2 heterostructure by strain and electric field
Da-Hua Ren(任达华), Qiang Li(李强), Kai Qian(钱楷), and Xing-Yi Tan(谭兴毅). Chin. Phys. B, 2022, 31(4): 047102.
[15] Doublet luminescence due to coexistence of excitons and electron-hole plasmas in optically excited CH3NH3PbBr3 single crystal
Jie Wang(王杰), Guang-Zhe Ma(马广哲), Lu Cao(曹露), Min Gao(高敏), and Dong Shi(石东). Chin. Phys. B, 2022, 31(4): 047104.
No Suggested Reading articles found!