Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(6): 060303    DOI: 10.1088/1674-1056/23/6/060303
GENERAL Prev   Next  

Entanglement and non-Markovianity of a spin-S system in a dephasing environment

Fan Zi-Long, Tian Jing, Zeng Hao-Sheng
Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education, and Department of Physics, Hunan Normal University, Changsha 410081, China
Abstract  We study the entanglement (measured by negativity) evolution and the non-Markovianity for the dynamical process of a spin-S system embedded in dephasing environments. The exact analytical solution is presented, which shows that the decoherence function governs the evolutions of coherence, entanglement, and the non-Markovianity of the corresponding dynamical processes. For Ohmic and sub-Ohmic reservoirs, the negativity decreases monotonically in time and the corresponding dynamics is Markovian. While for super-Ohmic reservoirs with non-monotonic decoherence function, the negativity appears as the phenomenon of revival and the corresponding dynamics is non-Markovian. The relation between non-Markovianity and the system dimension is studied.
Keywords:  entanglement      non-Markovianity      spin-S system      dephasing  
Received:  09 August 2013      Revised:  13 December 2013      Published:  15 June 2014
PACS:  03.65.Yz (Decoherence; open systems; quantum statistical methods)  
  42.50.Dv (Quantum state engineering and measurements)  
  42.50.Lc (Quantum fluctuations, quantum noise, and quantum jumps)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11275064 and 11075050), the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20124306110003), the Program for Changjiang Scholars and Innovative Research Team in Universities of China (Grant No. IRT0964), and the Construct Program of the National Key Discipline.
Corresponding Authors:  Zeng Hao-Sheng     E-mail:  hszeng@hunnu.edu.cn

Cite this article: 

Fan Zi-Long, Tian Jing, Zeng Hao-Sheng Entanglement and non-Markovianity of a spin-S system in a dephasing environment 2014 Chin. Phys. B 23 060303

[1] Breuer H P and Petruccione F 2002 The Theory of Open Quantum Systems (Oxford: Oxford University Press)
[2] Liu B H, Li L, Huang Y F, Li C F, Guo G C, Laine E M, Breuer H P and Piilo J 2011 Nat. Phys. 7 931
[3] Tang J S, Li C F, Li Y L, Zou X B, Guo G C, Breuer H P, Laine E M and Piilo J 2012 Europhys. Lett. 97 10002
[4] Ji Y H and Hu J J 2010 Chin. Phys. B 19 060304
[5] Hoeppe U, Wolff C, Küchenmeister J, Niegemann J, Drescher M, Benner H and Busch K 2012 Phys. Rev. Lett. 108 043603
[6] Shao J 2004 J. Chem. Phys. 120 5053
[7] Pomyalov A and Tannor D J 2005 J. Chem. Phys. 123 204111
[8] Chin A W, Datta A, Caruso F, Huelga S F and Plenio M B 2010 New J. Phys. 12 065002
[9] Guérin T, Bénichou O and Voituriez R 2012 Nat. Chem. 4 568
[10] Bellomo B, Lo Franco R, Maniscalco S and Compagno G 2008 Phys. Rev. A 78 060302
[11] Zhang Y J, Yang X Q, Han W and Xia Y J 2013 Chin. Phys. B 22 090307
[12] Wang X Y, Ding B F and Zhao H P 2013 Chin. Phys. B 22 020309
[13] Wang X Y, Ding B F and Zhao H P 2013 Chin. Phys. B 22 040308
[14] Zeng H S, Zheng Y P, Tang N and Wang G Y 2013 Quantum Inf. Process. 12 1637
[15] Wang Z, Guo Y and Zhou D L 2012 arXiv: 1207.2036
[16] Chin A W, Huelga S F and Plenio M B 2012 Phys. Rev. Lett. 109 233601
[17] Xiang G Y and Guo G C 2013 Chin. Phys. B 22 110601
[18] Vasile R, Olivares S, Paris M G A and Maniscalco S 2011 Phys. Rev. A 83 042321
[19] Laine E M, Breuer H P and Piilo J 2012 arXiv: 1210.8266
[20] Tang N, Xu T T and Zeng H S 2013 Chin. Phys. B 22 030304
[21] Zou H M, Fang M F and Yang B Y 2013 Chin. Phys. B 22 120303
[22] Tang N, Fan Z L and Zeng H S 2013 arXiv: 1306.0676
[23] Bylicka B, Chruściński D and Maniscalco S 2013 arXiv: 1301.2585
[24] Li Y L and Fang M F 2011 Chin. Phys. B 20 100312
[25] Breuer H P, Laine E M and Piilo J 2009 Phys. Rev. Lett. 103 210401
[26] Usha Devi A R, Rajagopal A K and Sudha 2011 Phys. Rev. A 83 022109
[27] Rivas A, Huelga S F and Plenio M B 2010 Phys. Rev. Lett. 105 050403
[28] Luo S, Fu S and Song H 2012 Phys. Rev. A 86 044101
[29] Wolf M M, Eisert J, Cubitt T S and Cirac J I 2008 Phys. Rev. Lett. 101 150402
[30] Chruściński D, Kossakowski A and Rivas Á 2011 Phys. Rev. A 83 052128
[31] Haikka P, Cresser J D and Maniscalco S 2011 Phys. Rev. A 83 012112
[32] Zeng H S, Tang N, Zheng Y P and Xu T T 2012 Eur. Phys. J. D 66 255
[33] Peres A 1996 Phys. Rev. Lett. 77 1413
[34] Horodečki P 1997 Phys. Lett. A 232 333
[35] Yang J, Wang Y, Wang Z, Rong X, Duan C K, Su J H and Du J 2012 Phys. Rev. Lett. 108 230501
[36] Thomale R, Rachel S, Schmitteckert P and Greiter M 2012 Phys. Rev. B 85 195149
[37] Schlottmann P and Zvyagin A A 2012 Phys. Rev. B 85 205129
[38] Bruß D and Macchiavello C 2002 Phys. Rev. Lett. 88 127901
[39] Cerf N J, Bourennane M, Karlsson A and Gisin N 2002 Phys. Rev. Lett. 88 127902
[40] Knill E 2004 quant-ph/0402171
[41] Walls D F and Milburn G J 1985 Phys. Rev. A 31 2403
[42] Haikka P, McEndoo S, De Chiara D, Palma G M and Maniscalco S 2011 Phys. Rev. A 84 031602
[43] Haikka P, Johnson T H and Maniscalco S 2013 Phys. Rev. A 87 010103
[44] Bellomo B, Lo Franco R and Compagno G 2007 Phys. Rev. Lett. 99 160502
[45] Werner R F 1989 Phys. Rev. A 40 4277
[46] Zeng H S, Tang N, Zheng Y P and Wang G Y 2011 Phys. Rev. A 84 032118
[47] Fanchini F F, Karpat G, Castelano L K and Rossatto D Z 2013 Phys. Rev. A 88 012105
[48] Yu T and Eberly J H 2004 Phys. Rev. Lett. 93 140404
[1] Deterministic nondestructive state analysis for polarization-spatial-time-bin hyperentanglement with cross-Kerr nonlinearity
Hui-Rong Zhang(张辉荣), Peng Wang(王鹏), Chang-Qi Yu(于长琦), and Bao-Cang Ren(任宝藏). Chin. Phys. B, 2021, 30(3): 030304.
[2] Dissipative dynamics of an entangled three-qubit system via non-Hermitian Hamiltonian: Its correspondence with Markovian and non-Markovian regimes
M Rastegarzadeh and M K Tavassoly. Chin. Phys. B, 2021, 30(3): 034205.
[3] Dissipative preparation of multipartite Greenberger-Horne-Zeilinger states of Rydberg atoms
Chong Yang(杨崇), Dong-Xiao Li(李冬啸), and Xiao-Qiang Shao(邵晓强). Chin. Phys. B, 2021, 30(2): 023201.
[4] Quantifying entanglement in terms of an operational way
Deng-Hui Yu(于登辉) and Chang-Shui Yu(于长水). Chin. Phys. B, 2021, 30(2): 020302.
[5] Detection and quantification of entanglement with measurement-device-independent and universal entanglement witness
Zhi-Jin Ke(柯芝锦), Yi-Tao Wang(王轶韬), Shang Yu(俞上), Wei Liu(刘伟), Yu Meng(孟雨), Zhi-Peng Li(李志鹏), Hang Wang(汪航), Qiang Li(李强), Jin-Shi Xu(许金时), Ya Xiao(肖芽), Jian-Shun Tang(唐建顺), Chuan-Feng Li(李传锋), Guang-Can Guo(郭光灿). Chin. Phys. B, 2020, 29(8): 080301.
[6] Transparently manipulating spin-orbit qubit via exact degenerate ground states
Kuo Hai(海阔), Wenhua Zhu(朱文华), Qiong Chen(陈琼), Wenhua Hai(海文华). Chin. Phys. B, 2020, 29(8): 083203.
[7] Reversion of weak-measured quantum entanglement state
Shao-Jiang Du(杜少将), Yonggang Peng(彭勇刚), Hai-Ran Feng(冯海冉), Feng Han(韩峰), Lian-Wu Yang(杨连武), Yu-Jun Zheng(郑雨军). Chin. Phys. B, 2020, 29(7): 074202.
[8] Non-Markovian entanglement transfer to distant atoms in a coupled superconducting resonator
Qingxia Mu(穆青霞), Peiying Lin(林佩英). Chin. Phys. B, 2020, 29(6): 060304.
[9] Quantum entanglement dynamics based oncomposite quantum collision model
Xiao-Ming Li(李晓明), Yong-Xu Chen(陈勇旭), Yun-Jie Xia(夏云杰), Qi Zhang(张琦), Zhong-Xiao Man(满忠晓). Chin. Phys. B, 2020, 29(6): 060302.
[10] Quantum teleportation of particles in an environment
Lu Yang(杨璐), Yu-Chen Liu(刘雨辰), Yan-Song Li(李岩松). Chin. Phys. B, 2020, 29(6): 060301.
[11] Qubit movement-assisted entanglement swapping
Sare Golkar, Mohammad Kazem Tavassoly, Alireza Nourmandipour. Chin. Phys. B, 2020, 29(5): 050304.
[12] Generating Kerr nonlinearity with an engineered non-Markovian environment
Fei-Lei Xiong(熊飞雷), Wan-Li Yang(杨万里), Mang Feng(冯芒). Chin. Phys. B, 2020, 29(4): 040302.
[13] Quantifying non-classical correlations under thermal effects in a double cavity optomechanical system
Mohamed Amazioug, Larbi Jebli, Mostafa Nassik, Nabil Habiballah. Chin. Phys. B, 2020, 29(2): 020304.
[14] Quantum speed limit time and entanglement in a non-Markovian evolution of spin qubits of coupled quantum dots
M. Bagheri Harouni. Chin. Phys. B, 2020, 29(12): 124203.
[15] Nonclassicality of photon-modulated atomic coherent states in the Schwinger bosonic realization
Jisuo Wang(王继锁), Xiangguo Meng(孟祥国), and Xiaoyan Zhang(张晓燕). Chin. Phys. B, 2020, 29(12): 124213.
No Suggested Reading articles found!