Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(10): 104213    DOI: 10.1088/1674-1056/22/10/104213

A high figure of merit localized surface plasmon sensor based on a gold nanograting on the top of a gold planar film

Zhang Zu-Yin, Wang Li-Na, Hu Hai-Feng, Li Kang-Wen, Ma Xun-Peng, Song Guo-Feng
Laboratory of Nano-Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
Abstract  We investigate the sensitivity and figure of merit (FOM) of a localized surface plasmon (LSP) sensor with gold nanograting on the top of planar metallic film. The sensitivity of the localized surface plasmon sensor is 317 nm/RIU, and the FOM is predicted to be above 8, which is very high for a localized surface plasmon sensor. By employing the rigorous coupled-wave analysis (RCWA) method, we analyze the distribution of the magnetic field and find that the sensing property of our proposed system is attributed to the interactions between the localized surface plasmon around the gold nanostrips and the surface plasmon polarition on the surface of the gold planar metallic film. These findings are important for developing high FOM localized surface plasmon sensors.
Keywords:  localized surface plasmon biosensor      figure of merit      nanogratings      gold film  
Received:  16 November 2012      Revised:  29 January 2013      Published:  30 August 2013
PACS:  42.82.Et (Waveguides, couplers, and arrays)  
  42.82.Gw (Other integrated-optical elements and systems)  
  42.25.Bs (Wave propagation, transmission and absorption)  
Fund: Project supported by the National Key Research Program of China (Grant No. 2011ZX01015-001).
Corresponding Authors:  Zhang Zu-Yin     E-mail:

Cite this article: 

Zhang Zu-Yin, Wang Li-Na, Hu Hai-Feng, Li Kang-Wen, Ma Xun-Peng, Song Guo-Feng A high figure of merit localized surface plasmon sensor based on a gold nanograting on the top of a gold planar film 2013 Chin. Phys. B 22 104213

[1] Ekmel O 2006 Science 311 189
[2] Zhang Y, Gu C, Schwartzberg A M and Zhang J Z 2005 Appl. Phys. Lett. 87 123105
[3] Jiang S M, Wu D J, Cheng Y and Liu X J 2012 Chin. Phys. B 21 127806
[4] Huang Q, Zhang X D, Zhang H, Xiong S Z, Geng W D, Geng X H and Zhao Y 2010 Chin. Phys. B 19 047304
[5] Lal S, Link S and Halas N J 2007 Nat. Photonics 1 641
[6] Willets K A and Van Duyne R P 2007 Ann. Rev. Phys. Chem. 58 267
[7] Liao H W, Nehl C L and Hafner J H 2006 Nanomedicine 1 201
[8] Byun K M 2010 J. Opt. Soc. Korea 14 65
[9] Ngold D, Seidel A, Orzekowsky R B, Lee S H, Deb S and Giessen H 2010 Opt. Lett. 35 3150
[10] Larsson E M, Langhammer C, Zorić I and Kasemo B 2009 Science 326 1091
[11] Wang F and Shen Y R 2006 Phys. Rev. Lett. 97 206806
[12] Sönnichsen C, Franzl T, Wilk T, von Plessen G and Feldmann J 2002 Phys. Rev. Lett. 88 077402
[13] Mayer K M and Hafner J H 2011 Chem. Rev. 111 3828
[14] Ghoshal A, Divliansky I and Kik P G 2009 Appl. Phys. Lett. 94 171108
[15] Cesario J, Quidant R, Badenes G and Enoch S 2005 Opt. Lett. 30 24
[16] Tip A 2004 Phys. Rev. E 69 016610
[17] Zhang J, Cai L K, Bai W L and Song G F 2010 Opt. Lett. 35 20
[18] Homola J 2008 Chem. Rev. 108 462
[1] Simulation study of high voltage GaN MISFETs with embedded PN junction
Xin-Xing Fei(费新星), Ying Wang(王颖), Xin Luo(罗昕), Cheng-Hao Yu(于成浩). Chin. Phys. B, 2020, 29(8): 080701.
[2] Electronic and thermoelectric properties of alkali metal-based perovskites CsYbF3 and RbYbF3
Q Mahmood, N A Noor, T Ghrib, Nessrin A Kattan, Asif Mahmood, and Shahid M Ramay. Chin. Phys. B, 2020, 29(11): 117305.
[3] Ultra wide sensing range plasmonic refractive index sensor based on nano-array with rhombus particles
Jiankai Zhu(朱剑凯), Xiangxian Wang(王向贤), Xiaoxiong Wu(吴枭雄), Yingwen Su(苏盈文), Yueqi Xu(徐月奇), Yunping Qi(祁云平), Liping Zhang(张丽萍), and Hua Yang(杨华)$. Chin. Phys. B, 2020, 29(11): 114204.
[4] Numerical study of optical trapping properties of nanoparticle on metallic film with periodic structure
Cheng-Xian Ge(葛城显), Zhen-Sen Wu(吴振森), Jing Bai(白靖), Lei Gong(巩蕾). Chin. Phys. B, 2019, 28(2): 024203.
[5] Physical properties of ternary thallium chalcogenes Tl2MQ3 (M=Zr, Hf; Q=S, Se, Te) via ab-initio calculations
Engin Ateser, Oguzhan Okvuran, Yasemin Oztekin Ciftci, Haci Ozisik, Engin Deligoz. Chin. Phys. B, 2019, 28(10): 106301.
[6] Thermoelectric properties of two-dimensional hexagonal indium-VA
Jing-Yun Bi(毕京云), Li-Hong Han(韩利红), Qian Wang(王倩), Li-Yuan Wu(伍力源), Ruge Quhe(屈贺如歌), Peng-Fei Lu(芦鹏飞). Chin. Phys. B, 2018, 27(2): 026802.
[7] Impact of coupling geometry on thermoelectric properties of oligophenyl-base transistor
S Ramezani Akbarabadi, H Rahimpour Soleimani, M Bagheri Tagani, Z Golsanamlou. Chin. Phys. B, 2017, 26(2): 027303.
[8] Performance analysis of surface plasmon resonance sensor with high-order absentee layer
Qing-Qing Meng(孟庆卿), Xin Zhao(赵鑫), Shu-Jing Chen(陈淑静), Cheng-You Lin(林承友), Ying-Chun Ding(丁迎春), Zhao-Yang Chen(陈朝阳). Chin. Phys. B, 2017, 26(12): 124213.
[9] Thermoelectric properties of Sr0.61Ba0.39Nb2O6 -δ ceramics in different oxygen-reduction conditions
Li Yi, Liu Jian, Wang Chun-Lei, Su Wen-Bin, Zhu Yuan-Hu, Li Ji-Chao, Mei Liang-Mo. Chin. Phys. B, 2015, 24(4): 047201.
[10] Multifunctional disk device for optical switch and temperature sensor
Bian Zhen-Yu, Liang Rui-Sheng, Zhang Yu-Jing, Yi Li-Xuan, Lai Gen, Zhao Rui-Tong. Chin. Phys. B, 2015, 24(10): 107801.
[11] Determination of thickness and optical dispersion property of gold film using spectroscopy of surface plasmon in frequency domain
Huang Yan, Ye Hong-An, Li Song-Quan, Dou Yin-Feng. Chin. Phys. B, 2013, 22(2): 027301.
No Suggested Reading articles found!