Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(2): 024203    DOI: 10.1088/1674-1056/28/2/024203
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Numerical study of optical trapping properties of nanoparticle on metallic film with periodic structure

Cheng-Xian Ge(葛城显)1, Zhen-Sen Wu(吴振森)1, Jing Bai(白靖)1, Lei Gong(巩蕾)2
1 School of Physics and Optoelectronic Engineering, Xidian University, Xi'an 710071, China;
2 School of Photoelectric Engineering, Xi'an Technological University, Xi'an 710021, China
Abstract  Based on the three-dimensional dispersive finite difference time domain method and Maxwell stress tensor equation, the optical trapping properties of nanoparticle placed on the gold film with periodic circular holes are investigated numerically. Surface plasmon polaritons are excited on the metal-dielectric interface, with particular emphasis on the crucial role in tailoring the optical force acting on a nearby nanoparticle. Utilizing a first order corrected electromagnetic field components for a fundamental Gaussian beam, the incident beam is added into the calculation model of the proposed method. To obtain the detailed trapping properties of nanoparticle, the selected calculations on the effects of beam waist radius, sizes of nanoparticle and circular holes, distance between incident Gaussian beam and gold film, material of nanoparticle and polarization angles of incident wave are analyzed in detail to demonstrate that the optical-trapping force can be explained as a virtual spring which has a restoring force to perform positive and negative forces as a nanoparticle moves closer to or away from the centers of circular holes. The results of optical trapping properties of nanoparticle in the vicinity of the gold film could provide guidelines for further research on the optical system design and manipulation of arbitrary composite nanoparticles.
Keywords:  surface plasmon      periodic circular holes      optical trapping force      Maxwell stress tensor      gold film  
Received:  02 August 2018      Revised:  09 October 2018      Accepted manuscript online: 
PACS:  42.25.Fx (Diffraction and scattering)  
  42.25.Bs (Wave propagation, transmission and absorption)  
  73.20.Mf (Collective excitations (including excitons, polarons, plasmons and other charge-density excitations))  
  02.70.Bf (Finite-difference methods)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61701382, 61601355, and 61571355), the China Postdoctoral Science Foundation (Grant No. 2016M602770), and the Xi'an Technological University Principal Foundation Key Project, China (Grant No. XAGDXJJ18001).
Corresponding Authors:  Zhen-Sen Wu     E-mail:  wuzhs@mail.xidian.edu.cn

Cite this article: 

Cheng-Xian Ge(葛城显), Zhen-Sen Wu(吴振森), Jing Bai(白靖), Lei Gong(巩蕾) Numerical study of optical trapping properties of nanoparticle on metallic film with periodic structure 2019 Chin. Phys. B 28 024203

[1] Tang B, Li Y, Zhou X, Huang L and Lang X 2016 Optik 127 6446
[2] Lu J H and Wang G H 2016 Chin. Phys. B 25 117804
[3] Novitsky A, Qiu C W and Wang H 2011 Phys. Rev. Lett. 107 203601
[4] Maragó O M, Jones P H, Gucciardi P G, Volpe G and Ferrari A C 2013 Nat. Nanotechnol. 8 807
[5] Ashkin A, Dziedzic J M, Bjorkholm J E and Chu S 1986 Opt. Lett. 11 288
[6] Grier G and Grier M D 2003 Nature 424 810
[7] Min C J, Shen Z, Shen J F, Zhang Y Q, Fang H, et al. 2013 Nat. Commun. 4 2891
[8] Shoji T and Tsuboi Y 2014 J. Phys. Chem. Lett. 5 2957
[9] Volpe G, Quidant R, Badenes G and Petrov D 2006 Phys. Rev. Lett. 96 238101
[10] Fang Y R and Tian X R 2018 Chin. Phys. B. 27 067302
[11] Evlyukhin A B and Bozhevolnyi S I 2005 Surf. Sci. 590 173
[12] Quidant R and Girard C 2008 Laser Photon. Rev. 2 47
[13] Zhan Q 2012 Opt. Express 20 6058
[14] Zhan Q 2003 J. Opt. A-Pure Appl. Opt. 5 229
[15] Zhao D and Liu Z 2013 Appl. Opt. 52 1310
[16] Zhao C and Cai Y 2011 Opt. Lett. 36 2251
[17] Peng F, Yao B, Yan S, Zhao W and Lei M 2009 J. Opt. Soc. Am. B 26 2242
[18] Zhang Y, Ding B and Suyama T 2010 Phys. Rev. A 81 023831
[19] Mohanty S K, Verma R S and Gupta P K 2007 Appl. Phys. B 87 211
[1] Numerical simulation of a truncated cladding negative curvature fiber sensor based on the surface plasmon resonance effect
Zhichao Zhang(张志超), Jinhui Yuan(苑金辉), Shi Qiu(邱石), Guiyao Zhou(周桂耀), Xian Zhou(周娴), Binbin Yan(颜玢玢), Qiang Wu(吴强), Kuiru Wang(王葵如), and Xinzhu Sang(桑新柱). Chin. Phys. B, 2023, 32(3): 034208.
[2] Fiber cladding dual channel surface plasmon resonance sensor based on S-type fiber
Yong Wei(魏勇), Xiaoling Zhao(赵晓玲), Chunlan Liu(刘春兰), Rui Wang(王锐), Tianci Jiang(蒋天赐), Lingling Li(李玲玲), Chen Shi(石晨), Chunbiao Liu(刘纯彪), and Dong Zhu(竺栋). Chin. Phys. B, 2023, 32(3): 030702.
[3] Dual-channel fiber-optic surface plasmon resonance sensor with cascaded coaxial dual-waveguide D-type structure and microsphere structure
Ling-Ling Li(李玲玲), Yong Wei(魏勇), Chun-Lan Liu(刘春兰), Zhuo Ren(任卓), Ai Zhou(周爱), Zhi-Hai Liu(刘志海), and Yu Zhang(张羽). Chin. Phys. B, 2023, 32(2): 020702.
[4] Chiral lateral optical force near plasmonic ring induced by Laguerre-Gaussian beam
Ying-Dong Nie(聂英东), Zhi-Guang Sun(孙智广), and Yu-Rui Fang(方蔚瑞). Chin. Phys. B, 2023, 32(1): 018702.
[5] Effect of surface plasmon coupling with radiating dipole on the polarization characteristics of AlGaN-based light-emitting diodes
Yi Li(李毅), Mei Ge(葛梅), Meiyu Wang(王美玉), Youhua Zhu(朱友华), and Xinglong Guo(郭兴龙). Chin. Phys. B, 2022, 31(7): 077801.
[6] Numerical study of a highly sensitive surface plasmon resonance sensor based on circular-lattice holey fiber
Jian-Fei Liao(廖健飞), Dao-Ming Lu(卢道明), Li-Jun Chen(陈丽军), and Tian-Ye Huang(黄田野). Chin. Phys. B, 2022, 31(6): 060701.
[7] Improving the performance of a GaAs nanowire photodetector using surface plasmon polaritons
Xiaotian Zhu(朱笑天), Bingheng Meng(孟兵恒), Dengkui Wang(王登魁), Xue Chen(陈雪), Lei Liao(廖蕾), Mingming Jiang(姜明明), and Zhipeng Wei(魏志鹏). Chin. Phys. B, 2022, 31(4): 047801.
[8] Multi-frequency focusing of microjets generated by polygonal prisms
Yu-Jing Yang(杨育静), De-Long Zhang(张德龙), and Ping-Rang Hua(华平壤). Chin. Phys. B, 2022, 31(3): 034201.
[9] Independently tunable dual resonant dip refractive index sensor based on metal—insulator—metal waveguide with Q-shaped resonant cavity
Haowen Chen(陈颢文), Yunping Qi(祁云平), Jinghui Ding(丁京徽), Yujiao Yuan(苑玉娇), Zhenting Tian(田振廷), and Xiangxian Wang(王向贤). Chin. Phys. B, 2022, 31(3): 034211.
[10] High sensitivity plasmonic temperature sensor based on a side-polished photonic crystal fiber
Zhigang Gao(高治刚), Xili Jing(井西利), Yundong Liu(刘云东), Hailiang Chen(陈海良), and Shuguang Li(李曙光). Chin. Phys. B, 2022, 31(2): 024207.
[11] Nano Ag-enhanced photoelectric conversion efficiency in all-inorganic, hole-transporting-layer-free CsPbIBr2 perovskite solar cells
Youming Huang(黄友铭), Yizhi Wu(吴以治), Xiaoliang Xu(许小亮), Feifei Qin(秦飞飞), Shihan Zhang(张诗涵), Jiakai An(安嘉凯), Huijie Wang(王会杰), and Ling Liu(刘玲). Chin. Phys. B, 2022, 31(12): 128802.
[12] Sensitivity improvement of aluminum-based far-ultraviolet nearly guided-wave surface plasmon resonance sensor
Tianqi Li(李天琦), Shujing Chen(陈淑静), and Chengyou Lin(林承友). Chin. Phys. B, 2022, 31(12): 124208.
[13] Enhanced and tunable circular dichroism in the visible waveband by coupling of the waveguide mode and local surface plasmon resonances in double-layer asymmetric metal grating
Liu-Li Wang(王刘丽), Yang Gu(顾阳), Yi-Jing Chen(陈怡静), Ya-Xian Ni(倪亚贤), and Wen Dong(董雯). Chin. Phys. B, 2022, 31(11): 118103.
[14] Enhanced photon emission by field emission resonances and local surface plasmon in tunneling junction
Jian-Mei Li(李健梅), Dong Hao(郝东), Li-Huan Sun(孙丽欢), Xiang-Qian Tang(唐向前), Yang An(安旸), Xin-Yan Shan(单欣岩), and Xing-Hua Lu(陆兴华). Chin. Phys. B, 2022, 31(11): 116801.
[15] Ultra-wideband surface plasmonic bandpass filter with extremely wide upper-band rejection
Xue-Wei Zhang(张雪伟), Shao-Bin Liu(刘少斌), Qi-Ming Yu(余奇明), Ling-Ling Wang(王玲玲), Kun Liao(廖昆), and Jian Lou(娄健). Chin. Phys. B, 2022, 31(11): 114101.
No Suggested Reading articles found!