Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(8): 087102    DOI: 10.1088/1674-1056/20/8/087102

Electronic properties of one-dimensional systems with long-range correlated binary potentials

Gong Long-Yana, Tong Pei-Qingb, Zhou Zi-Congc
a College of Science, Nanjing University of Posts and Telecommunications, Nanjing 210003, China; Department of Physics, Tamkang University, 151 Ying-Chuan, Tamsui 25137, Taipei, Taiwan, China; b Department of Physics, Nanjing Normal University, Nanjing 210097, China; c Department of Physics, Tamkang University, 151 Ying-Chuan, Tamsui 25137, Taipei, Taiwan, China
Abstract  We study numerically the electronic properties of one-dimensional systems with long-range correlated binary potentials. The potentials are mapped from binary sequences with a power-law power spectrum over the entire frequency range, which is characterized by correlation exponent β. We find the localization length ξ increases with β. At system sizes N→∞, there are no extended states. However, there exists a transition at a threshold βc. When β>βc, we obtain ξ>0. On the other hand, at finite system sizes, ξ ≥ N may happen at certain β, which makes the system “metallic”, and the upper-bound system size N*(β) is given.
Keywords:  localization      electronic properties      long-range correlation      binary potentials  
Received:  20 February 2011      Revised:  19 March 2011      Published:  15 August 2011
PACS:  71.23.An (Theories and models; localized states)  
  72.15.Rn (Localization effects (Anderson or weak localization))  
  71.30.+h (Metal-insulator transitions and other electronic transitions)  
Fund: Project supported by the National Natural Science Foundation of China (Grants Nos. 10904074 and 10974097), the National Key Basic Research Special Foundation of China (Grant No. 2009CB929501), and the National Science Council (Grant No. 97-2112- M-032-003-MY3).

Cite this article: 

Gong Long-Yan, Tong Pei-Qing, Zhou Zi-Cong Electronic properties of one-dimensional systems with long-range correlated binary potentials 2011 Chin. Phys. B 20 087102

[1] Anderson P W 1958 Phys. Rev. 109 1492
[2] Kramer B and MacKinnon A 1993 Rep. Prog. Phys. 56 1469
[3] Belitz D and Kirkpatrick T R 1994 Rev. Mod. Phys. 66 261
[4] Evers F and Mirlin A D 2008 Rev. Mod. Phys. 80 1355
[5] Hofstadter D R 1976 Phys. Rev. B 14 2239
[6] Song W G and Tong P Q 2009 Chin. Phys. B 18 4707
[7] Gong L Y and Tong P Q 2008 Chin. Phys. B 17 674 %Harper
[8] Dunlap D H, Wu H L and Phillips P 1990 Phys. Rev. Lett. 65 88 %Dimer
[9] Kohmoto M L, Kadanoff P and Tang C 1983 Phys. Rev. Lett. 50 1870 %Fibo
[10] Ryu C S, Oh G Y and Lee M H 1992 Phys. Rev. B 46 5162 %TM
[11] de Moura F A B F and Lyra M L 1998 Phys. Rev. Lett. 81 3735 %EXTENDED
[12] Shima H, Nomura T and Nakayama T 2004 Phys. Rev. B 70 075116 %EXTENDED TMM
[13] Nishino S, Yakubo K and Shima H 2009 Phys. Rev. B 79 033105%EXTENDED
[14] Carpena P, Bernaola-Galv'an P and Ivanov P Ch 2004 Phys. Rev. Lett. 93 176804 %level
[15] Liu X L, Xu H, Ma S S and Song Z Q 2006 Acta Phys. Sin. 55 2949 (in Chinese)
[16] Guo Z Z 2008 Chin. Phys. Lett. 25 1079
[17] Carpena P, Bernaola-Galv'an P, Ivanov P C and Stanley H E 2002 Nature 418 955%MIT BINARY
[18] Carpena P, Bernaola-Galv'an P, Ivanov P C and Stanley H E 2003 Nature 421 764 %MIT BINARY
[19] Yamada H 2004 Phys. Rev. B 69 014205
[20] Kaya T 2007 Eur. Phys. J. B 60 313 %ALPHA=2.0
[21] Gong L Y, Zhou Z C, Tong P Q and Zhao S M 2011 Physica A 390 2977
[22] Czir'ok A, Mantegna R N, Havlin S and Stanley H E 1995 Phys. Rev. E 52 446 %Fourier filtering method BINARY
[23] Bell R J and Dean P 1970 Discuss. Faraday Soc. 50 55 %PR
[24] MacKinnon A and Kramer B 1983 Z. Phys. B 53 1 %TMM Renormal
[25] Li W and Holste D 2005 Phys. Rev. E bf71 041910
[26] Zhang Y, Austin R H, Kraeft J, Cox E C and Ong N P 2002 Phys. Rev. Lett. bf89 198102
[27] Porath D, Bezryadin A, De Vries S and Decker C 2000 Nature bf403 635
[28] Fink H W and Sch"oenberger C 1999 Nature bf398 407 %conducting
[1] Tailoring electronic properties of two-dimensional antimonene with isoelectronic counterparts
Ye Zhang(张也), Huai-Hong Guo(郭怀红), Bao-Juan Dong(董宝娟), Zhen Zhu(朱震), Teng Yang(杨腾), Ji-Zhang Wang(王吉章), Zhi-Dong Zhang(张志东). Chin. Phys. B, 2020, 29(3): 037305.
[2] High-precision three-dimensional atom localization via probe absorption at room temperature
Mengmeng Luo(罗萌萌), Wenxiao Liu(刘文晓), Dingyu Cai(蔡定宇), and Shaoyan Gao(高韶燕). Chin. Phys. B, 2020, 29(12): 124205.
[3] Energy relaxation in disordered lattice φ4 system: The combined effects of disorder and nonlinearity
Jianjin Wang(汪剑津), Yong Zhang(张勇), and Daxing Xiong(熊大兴). Chin. Phys. B, 2020, 29(12): 120503.
[4] High-dimensional atomic microscopy in surface plasmon polaritons
Akhtar Munir, Abdul Wahab, and Munsif Jan. Chin. Phys. B, 2020, 29(12): 124204.
[5] Electronic shell study of prolate Lin(n =15-17) clusters: Magnetic superatomic molecules
Lijuan Yan(闫丽娟), Jianmei Shao(邵健梅), and Yongqiang Li(李永强). Chin. Phys. B, 2020, 29(12): 125101.
[6] Tuning thermal transport via phonon localization in nanostructures
Dengke Ma(马登科), Xiuling Li(李秀玲), and Lifa Zhang(张力发). Chin. Phys. B, 2020, 29(12): 126502.
[7] Hidden Anderson localization in disorder-free Ising–Kondo lattice
Wei-Wei Yang(杨薇薇), Lan Zhang(张欄), Xue-Ming Guo(郭雪明), Yin Zhong(钟寅). Chin. Phys. B, 2020, 29(10): 107301.
[8] Theoretical investigation of halide perovskites for solar cell and optoelectronic applications
Jingxiu Yang(杨竞秀), Peng Zhang(张鹏), Jianping Wang(王建平), Su-Huai Wei(魏苏淮). Chin. Phys. B, 2020, 29(10): 108401.
[9] Collapses-revivals phenomena induced by weak magnetic flux in diamond chain
Na-Na Chang(常娜娜), Wen-Quan Jing(景文泉), Yu Zhang(张钰), Ai-Xia Zhang(张爱霞), Ju-Kui Xue(薛具奎), Su-Peng Kou(寇谡鹏). Chin. Phys. B, 2020, 29(1): 010306.
[10] Quantum density functional theory studies of structural, elastic, and opto-electronic properties of ZMoO3 (Z=Ba and Sr) under pressure
Saad Tariq, A A Mubarak, Saher Saad, M Imran Jamil, S M Sohail Gilani. Chin. Phys. B, 2019, 28(6): 066101.
[11] Enhancement of spatial resolution of ghost imaging via localizing and thresholding
Yunlong Wang(王云龙), Yingnan Zhou(周英男), Shaoxiong Wang(王少雄), Feiran Wang(王斐然), Ruifeng Liu(刘瑞丰), Hong Gao(高宏), Pei Zhang(张沛), Fuli Li(李福利). Chin. Phys. B, 2019, 28(4): 044202.
[12] Physical properties of B4N4-I and B4N4-Ⅱ: First-principles study
Zhenyang Ma(马振洋), Peng Wang(王鹏), Fang Yan(阎芳), Chunlei Shi(史春蕾), Yi Tian(田毅). Chin. Phys. B, 2019, 28(3): 036101.
[13] Dynamical stable-jump-stable-jump picture in a non-periodically driven quantum relativistic kicked rotor system
Hsincheng Yu(于心澄), Zhongzhou Ren(任中洲), Xin Zhang(张欣). Chin. Phys. B, 2019, 28(2): 020504.
[14] Observation of hopping transitions for delocalized electrons by temperature-dependent conductance in siliconjunctionless nanowire transistors
Yang-Yan Guo(郭仰岩), Wei-Hua Han(韩伟华), Xiao-Song Zhao(赵晓松), Ya-Mei Dou(窦亚梅), Xiao-Di Zhang(张晓迪), Xin-Yu Wu(吴歆宇), Fu-Hua Yang(杨富华). Chin. Phys. B, 2019, 28(10): 107303.
[15] Photoluminescence properties of blue and green multiple InGaN/GaN quantum wells
Chang-Fu Li(李长富), Kai-Ju Shi(时凯居), Ming-Sheng Xu(徐明升), Xian-Gang Xu(徐现刚), Zi-Wu Ji(冀子武). Chin. Phys. B, 2019, 28(10): 107803.
No Suggested Reading articles found!