Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(3): 030301    DOI: 10.1088/1674-1056/20/3/030301
GENERAL Prev   Next  

Influence of selective atomic measurement on the entanglement properties of a two-atom outside cavity

Lu Dao-Ming
Department of Electronic Engineering, Wuyi University, Wuyishan 354300, China
Abstract  Considering three two-level atoms initially in the W or Greenberger–Horne–Zeilinger (GHZ) state, one of the three atoms is put into an initially coherent light cavity and made to resonantly interact with the cavity. The two-atom entanglement evolution outside the cavity is investigated. The influences of state-selective measurement of the atom inside the cavity and strength of the light field on the two-atom entanglement evolution outside the cavity are discussed. The results obtained from the numerical method show that the two-atom entanglement outside the cavity is strengthened through state-selective measurement of the atom inside the cavity. In addition, the strength of the light field also influences the two-atom entanglement properties.
Keywords:  quantum optics      two-level atom      selective atomic measurement      entanglement  
Received:  20 April 2010      Revised:  15 May 2010      Published:  15 March 2011
PACS:  03.65Ud  
  42.50.Dv (Quantum state engineering and measurements)  
Fund: Project supported by the Natural Science Foundation of Fujian Province, China (Grant No. 2008J0217).

Cite this article: 

Lu Dao-Ming Influence of selective atomic measurement on the entanglement properties of a two-atom outside cavity 2011 Chin. Phys. B 20 030301

[1] Davidovich L, Zagury N, Brune M, Raimond J M and Haroche S 1994 Phys. Rev. A 50 R895
[2] Bennett C H, Brassard G and Mermin N D 1992 Phys. Rev. Lett. 168 557
[3] Cirac J I and Zoller P 1995 Phys. Rev. Lett. 74 4091
[4] Zheng S B and Guo G C 2000 Phys. Rev. Lett. 85 2392
[5] Zheng S B 2010 Chin. Phys. B 19 044204
[6] Lin L H 2009 Chin. Phys. B 18 0588
[7] Phoenix S J D and Kinght P L 1991 Phys. Rev. A 44 6023
[8] Knoll L 1995 Phys.Rev. A 51 1622
[9] Vidal G and Wemer R F 2004 Phys. Rev. A 65 032314
[10] Wei T C, Nemoto K, Galdbart P M, Kwiat P G, Munro W J and Verstracte F 2003 Phys. Rev. A 67 022110
[11] Gerry C C and Ghosh H H 1997 Phys. Lett. A 229 17
[12] Yang C P and Guo G C 1999 Phys. Lett. A 255 129
[13] Wu H Z and Su W J 2007 Chin. Phys. 16 106
[14] Ye S Y 2006 Commun. Theor. Phys (Beijing, China) 46 1065
[15] Zhou Y, Zhang Y J and Xia Y J 2007 Acta Optica Sinica bf 27 1122
[16] Akhtarshenas S J and Farsi M 2007 quant-ph/0702101V1
[1] Deterministic nondestructive state analysis for polarization-spatial-time-bin hyperentanglement with cross-Kerr nonlinearity
Hui-Rong Zhang(张辉荣), Peng Wang(王鹏), Chang-Qi Yu(于长琦), and Bao-Cang Ren(任宝藏). Chin. Phys. B, 2021, 30(3): 030304.
[2] Dissipative dynamics of an entangled three-qubit system via non-Hermitian Hamiltonian: Its correspondence with Markovian and non-Markovian regimes
M Rastegarzadeh and M K Tavassoly. Chin. Phys. B, 2021, 30(3): 034205.
[3] Dissipative preparation of multipartite Greenberger-Horne-Zeilinger states of Rydberg atoms
Chong Yang(杨崇), Dong-Xiao Li(李冬啸), and Xiao-Qiang Shao(邵晓强). Chin. Phys. B, 2021, 30(2): 023201.
[4] Quantifying entanglement in terms of an operational way
Deng-Hui Yu(于登辉) and Chang-Shui Yu(于长水). Chin. Phys. B, 2021, 30(2): 020302.
[5] Detection and quantification of entanglement with measurement-device-independent and universal entanglement witness
Zhi-Jin Ke(柯芝锦), Yi-Tao Wang(王轶韬), Shang Yu(俞上), Wei Liu(刘伟), Yu Meng(孟雨), Zhi-Peng Li(李志鹏), Hang Wang(汪航), Qiang Li(李强), Jin-Shi Xu(许金时), Ya Xiao(肖芽), Jian-Shun Tang(唐建顺), Chuan-Feng Li(李传锋), Guang-Can Guo(郭光灿). Chin. Phys. B, 2020, 29(8): 080301.
[6] Transparently manipulating spin-orbit qubit via exact degenerate ground states
Kuo Hai(海阔), Wenhua Zhu(朱文华), Qiong Chen(陈琼), Wenhua Hai(海文华). Chin. Phys. B, 2020, 29(8): 083203.
[7] Reversion of weak-measured quantum entanglement state
Shao-Jiang Du(杜少将), Yonggang Peng(彭勇刚), Hai-Ran Feng(冯海冉), Feng Han(韩峰), Lian-Wu Yang(杨连武), Yu-Jun Zheng(郑雨军). Chin. Phys. B, 2020, 29(7): 074202.
[8] Optical nonreciprocity in a piezo-optomechanical system
Yu-Ming Xiao(肖玉铭), Jun-Hao Liu(刘军浩), Qin Wu(吴琴), Ya-Fei Yu(於亚飞), Zhi-Ming Zhang(张智明). Chin. Phys. B, 2020, 29(7): 074204.
[9] Non-Markovian entanglement transfer to distant atoms in a coupled superconducting resonator
Qingxia Mu(穆青霞), Peiying Lin(林佩英). Chin. Phys. B, 2020, 29(6): 060304.
[10] Quantum entanglement dynamics based oncomposite quantum collision model
Xiao-Ming Li(李晓明), Yong-Xu Chen(陈勇旭), Yun-Jie Xia(夏云杰), Qi Zhang(张琦), Zhong-Xiao Man(满忠晓). Chin. Phys. B, 2020, 29(6): 060302.
[11] Quantum teleportation of particles in an environment
Lu Yang(杨璐), Yu-Chen Liu(刘雨辰), Yan-Song Li(李岩松). Chin. Phys. B, 2020, 29(6): 060301.
[12] Qubit movement-assisted entanglement swapping
Sare Golkar, Mohammad Kazem Tavassoly, Alireza Nourmandipour. Chin. Phys. B, 2020, 29(5): 050304.
[13] Quantum speed limit time of a non-Hermitian two-level system
Yan-Yi Wang(王彦懿), Mao-Fa Fang(方卯发). Chin. Phys. B, 2020, 29(3): 030304.
[14] Construction of Laguerre polynomial's photon-added squeezing vacuum state and its quantum properties
Dao-Ming Lu(卢道明). Chin. Phys. B, 2020, 29(3): 030301.
[15] Optical enhanced interferometry with two-mode squeezed twin-Fock states and parity detection
Li-Li Hou(侯丽丽), Shuai Wang(王帅), Xue-Fen Xu(许雪芬). Chin. Phys. B, 2020, 29(3): 034203.
No Suggested Reading articles found!