Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(7): 077103    DOI: 10.1088/1674-1056/28/7/077103
RAPID COMMUNICATION Prev   Next  

Possible nodeless s±-wave superconductivity in twisted bilayer graphene

Zhe Liu(刘哲)1, Yu Li(李宇)1,2, Yi-Feng Yang(杨义峰)1,2,3,4
1 Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
2 University of Chinese Academy of Sciences, Beijing 100049, China;
3 Songshan Lake Materials Laboratory, Dongguan 523808, China;
4 Collaborative Innovation Center of Quantum Matter, Beijing 100190, China
Abstract  

The recent discovery of superconductivity in the twisted bilayer graphene has stimulated numerous theoretical proposals concerning its exact gap symmetry. Among them, the d+ id or p+ ip-wave was believed to be the most plausible solution. Here, considering that the superconductivity emerges near a correlated insulating state and may be induced by antiferromagnetic spin fluctuations, we apply the strong-coupling Eliashberg theory with both inter- and intraband quantum critical pairing interactions and discuss the possible gap symmetry in an effective low-energy four-orbital model. Our calculations reveal a nodeless s±-wave as the most probable candidate for the superconducting gap symmetry in the experimentally relevant parameter range. This solution is distinctly different from previous theoretical proposals. It highlights the multi-gap nature of the superconductivity and puts the twisted bilayer graphene in the same class as the iron-pnictide, electron-doped cuprate, and some heavy fermion superconductors.

Keywords:  twisted bilayer graphene      superconductivity  
Received:  06 May 2019      Accepted manuscript online: 
PACS:  71.27.+a (Strongly correlated electron systems; heavy fermions)  
  74.70.Tx (Heavy-fermion superconductors)  
Fund: 

Project supported by the National Key R&D Program of China (Grant No. 2017YFA0303103), the National Natural Science Foundation of China (Grant Nos. 11774401 and 11522435), the State Key Development Program for Basic Research of China (Grant No. 2015CB921303), the Strategic Priority Research Program (B) of the Chinese Academy of Sciences (Grant No. XDB07020200), and the Youth Innovation Promotion Association of the Chinese Academy of Sciences.

Corresponding Authors:  Yi-Feng Yang     E-mail:  yifeng@iphy.ac.cn

Cite this article: 

Zhe Liu(刘哲), Yu Li(李宇), Yi-Feng Yang(杨义峰) Possible nodeless s±-wave superconductivity in twisted bilayer graphene 2019 Chin. Phys. B 28 077103

[34] Xu C and Balents L 2018 Phys. Rev. Lett. 121 087001
[1] Cao Y, Fatemi V, Fang S, Watanabe K, Taniguchi T, Kaxiras E and Jarillo-Herrero P 2018 Nature 556 43
[35] Guo H, Zhu X, Feng S and Scalettar R T 2018 Phys. Rev. B 97 235453
[2] Cao Y, Fatemi V, Demir A, Fang S, Tomarken S L, Luo J Y, Sanchez-Yamagishi J D, Watanabe K, Taniguchi T, Kaxiras E, Ashoori R C and Jarillo-Herrero P 2018 Nature 556 80
[36] Zhang L 2019 Sci. Bull. 64 495
[3] Latil S, Meunier V and Henrard L 2007 Phys. Rev. B 76 201402(R)
[37] Liu C C, Zhang L D, Chen W Q and Yang F 2018 Phys. Rev. Lett. 121 217001
[4] Morozov S V, Novoselov K S, Katsnelson M I, Schedin F, Elias D C, Jaszczak J A and Geim A K 2008 Phys. Rev. Lett. 100 016602
[38] Yuan N F Q and Fu L 2018 Phys. Rev. B 98 045103
[5] Mele E J 2010 Phys. Rev. B 81 161405(R)
[39] Dodaro J F, Kivelson S A, Schattner Y, Sun X Q and Wang C 2018 Phys. Rev. B 98 075154
[6] Bistritzer R and MacDonald A H 2010 Phys. Rev. B 81 245412
[7] Suárez Morell E, Correa J D, Vargas P, Pacheco M and Barticevic Z 2010 Phys. Rev. B 82 121407(R)
[40] Wu X C, Pawlak K A, Jian C M and Xu C 2018 arXiv:1805.06906v1 [cond-mat.str-el]
[8] Luican A, Li G, Reina A, Kong J, Nair R R, Novoselov K S, Geim A K and Andrei E Y 2011 Phys. Rev. Lett. 106 126802
[41] Ochi M, Koshino M and Kuroki K 2018 Phys. Rev. B 98 081102(R)
[9] Moon P and Koshino M 2012 Phys. Rev. B 85 195458
[42] Po H C, Zou L, Vishwanath A and Senthil T 2018 Phys. Rev. X 8 031089
[10] Trambly de Laissardi'ere G, Mayou D and Magaud L 2012 Phys. Rev. B 86 125413
[43] Koshino M, Yuan N F Q, Koretsune T, Ochi M, Kuroki K and Fu L 2018 Phys. Rev. X 8 031087
[11] Lopes dos Santos J M B, Peres N M R and Castro Neto A H 2012 Phys. Rev. B 86 155449
[44] Zou L, Po H C, Vishwanath A and Senthil T 2018 Phys. Rev. B 98 085435
[12] Brihuega I, Mallet P, González-Herrero H, Trambly de Laissardi'ere G, Ugeda M M, Magaud L, Gómez-Rodríguez J M, Ynduráin F and Veuillen J Y 2012 Phys. Rev. Lett. 109 196802
[45] Kang J and Vafek O 2018 Phys. Rev. X 8 031088
[13] González J 2013 Phys. Rev. B 88 125434
[14] Uchida K, Furuya S, Iwata J I and Oshiyama A 2014 Phys. Rev. B 90 155451
[46] Po H C, Zou L, Senthil T and Vishwanath A 2018 arXiv:1808.02482v2 [cond-mat.str-el]
[15] Sboychakov A O, Rakhmanov A L, Rozhkov A V and Nori F 2015 Phys. Rev. B 92 075402
[16] Cao Y, Luo J Y, Fatemi V, Fang S, Sanchez-Yamagishi J D, Watanabe K, Taniguchi T, Kaxiras E and Jarillo-Herrero P 2016 Phys. Rev. Lett. 117 116804
[47] Rademaker L and Mellado P 2018 Phys. Rev. B 98 235158
[48] Venderbos J W F and Fernandes R M 2018 Phys. Rev. B 98 245103
[17] Li S Y, Liu K Q, Yin L J, Wang W X, Yan W, Yang X Q, Yang J K, Liu H, Jiang H and He L 2017 Phys. Rev. B 96 155416
[18] Kim K, DaSilva A, Huang S, Fallahazad B, Larentis S, Taniguchi T, Watanabe K, LeRoy B J, MacDonald A H and Tutuc E 2017 Proc. Natl. Acad. Sci. USA 114 3364
[49] Isobe H, Yuan N F Q and Fu L 2018 Phys. Rev. X 8 041041
[19] Huder L, Artaud A, Quang T L, de Laissardi'ere G T, Jansen A G M, Lapertot G, Chapelier C and Renard V T 2018 Phys. Rev. Lett. 120 156405
[50] Padhi B, Setty C and Phillips P W 2018 Nano Lett. 18 6175
[20] Lopes dos Santos J M B, Peres N M R and Castro Neto A H 2007 Phys. Rev. Lett. 99 256802
[21] Mele E J 2011 Phys. Rev. B 84 235439
[51] Pizarro J M, Calderón M J and Bascones E 2018 arXiv:1805.07303v1 [cond-mat.str-el]
[22] Yin L J, Qiao J B, Wang W X, Zuo W J, Yan W, Xu R, Dou R F, Nie J C and He L 2015 Phys. Rev. B 92 201408(R)
[52] González J and Stauber T 2019 Phys. Rev. Lett. 122 026801
[23] Fang S and Kaxiras E 2016 Phys. Rev. B 93 235153
[53] Sherkunov Y and Betouras J J 2018 Phys. Rev. B 98 205151
[24] Nam N N T and Koshino M 2017 Phys. Rev. B 96 075311
[54] Kennes D M, Lischner J and Karrasch C 2018 Phys. Rev. B 98 241407(R)
[25] Gonzalez-Arraga L A, Lado J L, Guinea F and San-Jose P 2017 Phys. Rev. Lett. 119 107201
[55] Lin Y P and Nandkishore R M 2018 Phys. Rev. B 98 214521
[26] Yan W, Liu M, Dou R F, Meng L, Feng L, Chu Z D, Zhang Y, Liu Z, Nie J C and He L 2012 Phys. Rev. Lett. 109 126801
[56] Fidrysiak M, Zegrodnik M and Spalek J 2018 Phys. Rev. B 98 085436
[27] Li G, Luican A, Lopes dos Santos J M B, Castro Neto A H, Reina A, Kong J and Andrei E Y 2010 Nat. Phys. 6 109
[57] Roy B and Juričić V 2019 Phys. Rev. B 99 121407(R)
[28] Bistritzer R and MacDonald A H 2011 Proc. Natl. Acad. Sci. USA 108 12233
[58] Su Y and Lin S Z 2018 Phys. Rev. B 98 195101
[29] Trambly de Laissardi'ere G, Mayou D and Magaud L 2010 Nano Lett. 10 804
[59] Ray S and Das T 2019 Phys. Rev. B 99 134515
[30] Ohta T, Robinson J T, Feibelman P J, Bostwick A, Rotenberg E and Beechem T E 2012 Phys. Rev. Lett. 109 186807
[60] Tang Q K, Yang L, Wang D, Zhang F C and Wang Q H 2019 Phys. Rev. B 99 094521
[31] Yankowitz M, Jung J, Laksono E, Leconte N, Chittari B L, Watanabe K, Taniguchi T, Adam S, Graf D and Dean C R 2018 Nature 557 404
[61] You Y Z and Vishwanath A 2019 arXiv:1805.06867v2 [cond-mat.str-el]
[32] Kerelsky A, McGilly L, Kennes D M, Xian L, Yankowitz M, Chen S, Watanabe K, Taniguchi T, Hone J, Dean C, Rubio A and Pasupathy A N 2018 arXiv:1812.08776v2 [cond-mat.mes-hall]
[33] Huang T, Zhang L and Ma T 2019 Sci. Bull. 64 310
[62] Baskaran G 2018 arXiv:1804.00627v1 [cond-mat.supr-con]
[34] Xu C and Balents L 2018 Phys. Rev. Lett. 121 087001
[35] Guo H, Zhu X, Feng S and Scalettar R T 2018 Phys. Rev. B 97 235453
[63] Peltonen T J, Ojajärvi R and Heikkilä T T 2018 Phys. Rev. B 98 220504(R)
[36] Zhang L 2019 Sci. Bull. 64 495
[64] Irkhin V Y and Skryabin Y N 2018 JETP Lett. 107 651
[37] Liu C C, Zhang L D, Chen W Q and Yang F 2018 Phys. Rev. Lett. 121 217001
[65] Zhang Y H, Mao D, Cao Y, Jarillo-Herrero P and Senthil T 2019 Phys. Rev. B 99 075127
[38] Yuan N F Q and Fu L 2018 Phys. Rev. B 98 045103
[39] Dodaro J F, Kivelson S A, Schattner Y, Sun X Q and Wang C 2018 Phys. Rev. B 98 075154
[66] Zhu G Y, Xiang T and Zhang G M 2018 arXiv:1806.07535v2 [cond-mat.str-el]
[67] Wu F, MacDonald A H and Martin I 2018 Phys. Rev. Lett. 121 257001
[40] Wu X C, Pawlak K A, Jian C M and Xu C 2018 arXiv:1805.06906v1 [cond-mat.str-el]
[68] Carr S, Fang S, Jarillo-Herrero P and Kaxiras E 2018 Phys. Rev. B 98 085144
[41] Ochi M, Koshino M and Kuroki K 2018 Phys. Rev. B 98 081102(R)
[69] Guinea F and Walet N R 2018 Proc. Natl. Acad. Sci. USA 115 13174
[42] Po H C, Zou L, Vishwanath A and Senthil T 2018 Phys. Rev. X 8 031089
[43] Koshino M, Yuan N F Q, Koretsune T, Ochi M, Kuroki K and Fu L 2018 Phys. Rev. X 8 031087
[70] Lian B, Wang Z and Bernevig B A 2019 arXiv:1807.04382v3 [cond-mat.mes-hall]
[44] Zou L, Po H C, Vishwanath A and Senthil T 2018 Phys. Rev. B 98 085435
[45] Kang J and Vafek O 2018 Phys. Rev. X 8 031088
[71] Song Z, Wang Z, Shi W, Li G, Fang C and Bernevig B A 2018 arXiv:1807.10676v2 [cond-mat.mes-hall]
[72] Laksono E, Leaw J N, Reaves A, Singh M, Wang X, Adam S, Gu X 2018 Solid State Comm. 282 38
[46] Po H C, Zou L, Senthil T and Vishwanath A 2018 arXiv:1808.02482v2 [cond-mat.str-el]
[73] Chen L, Li H Z and Han R S 2019 J. Phys.: Condens. Matter 31 065601
[47] Rademaker L and Mellado P 2018 Phys. Rev. B 98 235158
[74] Steglich F, Aarts J, Bredl C D, Lieke W, Meschede D, Franz W and Schäfer H 1979 Phys. Rev. Lett. 43 1892
[48] Venderbos J W F and Fernandes R M 2018 Phys. Rev. B 98 245103
[75] Stockert O, Arndt J, Faulhaber E, Geibel C, Jeevan H S, Kirchner S, Loewenhaupt M, Schmalzl K, Schmidt W, Si Q and Steglich F 2011 Nat. Phys. 7 119
[49] Isobe H, Yuan N F Q and Fu L 2018 Phys. Rev. X 8 041041
[76] Arndt J, Stockert O, Schmalzl K, Faulhaber E, Jeevan H S, Geibel C, Schmidt W, Loewenhaupt M and Steglich F 2011 Phys. Rev. Lett. 106 246401
[50] Padhi B, Setty C and Phillips P W 2018 Nano Lett. 18 6175
[77] Vieyra H A, Oeschler N, Seiro S, Jeevan H S, Geibel C, Parker D and Steglich F 2011 Phys. Rev. Lett. 106 207001
[78] Kittaka S, Aoki Y, Shimura Y, Sakakibara T, Seiro S, Geibel C, Steglich F, Ikeda H and Machia K 2014 Phys. Rev. Lett. 112 067002
[51] Pizarro J M, Calderón M J and Bascones E 2018 arXiv:1805.07303v1 [cond-mat.str-el]
[79] Enayat M, Sun Z, Maldonado A, Suderow H, Seiro S, Geibel C, Wirth S, Steglich F and Wahl P 2016 Phys. Rev. B 93 045123
[52] González J and Stauber T 2019 Phys. Rev. Lett. 122 026801
[80] Li Y, Liu M, Fu Z, Chen X, Yang F and Yang Y F 2018 Phys. Rev. Lett. 120 217001
[53] Sherkunov Y and Betouras J J 2018 Phys. Rev. B 98 205151
[81] Millis A J, Monien H and Pines D 1990 Phys. Rev. B 42 167
[54] Kennes D M, Lischner J and Karrasch C 2018 Phys. Rev. B 98 241407(R)
[82] Monthoux P, Balatsky A V and Pines D 1991 Phys. Rev. Lett. 67 3448
[55] Lin Y P and Nandkishore R M 2018 Phys. Rev. B 98 214521
[83] Monthoux P and Pines D 1992 Phys. Rev. Lett. 69 961
[56] Fidrysiak M, Zegrodnik M and Spalek J 2018 Phys. Rev. B 98 085436
[84] Millis A J 1992 Phys. Rev. B 45 13047
[57] Roy B and Juričić V 2019 Phys. Rev. B 99 121407(R)
[85] Monthoux P, Balatsky A V and Pines D 1992 Phys. Rev. B 46 14803
[58] Su Y and Lin S Z 2018 Phys. Rev. B 98 195101
[86] Monthoux P and Pines D 1994 Phys. Rev. B 49 4261
[59] Ray S and Das T 2019 Phys. Rev. B 99 134515
[87] Monthoux P and Lonzarich G G 2002 Phys. Rev. B 66 224504
[60] Tang Q K, Yang L, Wang D, Zhang F C and Wang Q H 2019 Phys. Rev. B 99 094521
[88] Dolgov O V, Mazin I I, Parker D and Golubov A A 2009 Phys. Rev. B 79 060502(R)
[89] Yang Y F and Pines D 2014 Proc. Natl. Acad. Sci. USA 111 18178
[61] You Y Z and Vishwanath A 2019 arXiv:1805.06867v2 [cond-mat.str-el]
[90] Min H, Hill J E, Sinitsyn N A, Sahu B R, Kleinman L and MacDonald A H 2006 Phys. Rev. B 74 165310
[91] Yao Y, Ye F, Qi X L, Zhang S C and Fang Z 2007 Phys. Rev. B 75 041401(R)
[62] Baskaran G 2018 arXiv:1804.00627v1 [cond-mat.supr-con]
[92] Bang Y and Stewart G R 2017 J. Phys.: Condens. Matter 29 123003
[63] Peltonen T J, Ojajärvi R and Heikkilä T T 2018 Phys. Rev. B 98 220504(R)
[64] Irkhin V Y and Skryabin Y N 2018 JETP Lett. 107 651
[93] Kittaka S, Aoki Y, Shimura Y, Sakakibara T, Seiro S, Geibel C, Steglich F, Tsutsumi Y, Ikeda H and Machida K Phys. Rev. B 94 054514
[65] Zhang Y H, Mao D, Cao Y, Jarillo-Herrero P and Senthil T 2019 Phys. Rev. B 99 075127
[94] Maeno Y, Kittaka S, Nomura T, Yonezawa S and Ishida K 2012 J. Phys. Soc. Jpn. 81 011009
[95] Xiao D, Yao W and Niu Q 2007 Phys. Rev. Lett. 99 236809
[66] Zhu G Y, Xiang T and Zhang G M 2018 arXiv:1806.07535v2 [cond-mat.str-el]
[96] Rycerz A, Tworzydlo J and Beenakker C W J 2007 Nat. Phys. 3 172
[67] Wu F, MacDonald A H and Martin I 2018 Phys. Rev. Lett. 121 257001
[97] Van Harlingen D J 1995 Rev. Mod. Phys. 67 515
[68] Carr S, Fang S, Jarillo-Herrero P and Kaxiras E 2018 Phys. Rev. B 98 085144
[98] Charpentier S, Galletti L, Kunakova G, Arpaia R, Song Y, Baghdadi R, Wang S M, Kalaboukhov A, Olsson E, Tafuri F, Golubev D, Linder J, Bauch T and Lombardi F 2017 Nat. Comm. 8 2019
[69] Guinea F and Walet N R 2018 Proc. Natl. Acad. Sci. USA 115 13174
[99] Schemm E R, Baumbach R E, Tobash P H, Ronning F, Bauer E D and Kapitulnik A 2015 Phys. Rev. B 91 140506(R)
[70] Lian B, Wang Z and Bernevig B A 2019 arXiv:1807.04382v3 [cond-mat.mes-hall]
[71] Song Z, Wang Z, Shi W, Li G, Fang C and Bernevig B A 2018 arXiv:1807.10676v2 [cond-mat.mes-hall]
[72] Laksono E, Leaw J N, Reaves A, Singh M, Wang X, Adam S, Gu X 2018 Solid State Comm. 282 38
[73] Chen L, Li H Z and Han R S 2019 J. Phys.: Condens. Matter 31 065601
[74] Steglich F, Aarts J, Bredl C D, Lieke W, Meschede D, Franz W and Schäfer H 1979 Phys. Rev. Lett. 43 1892
[75] Stockert O, Arndt J, Faulhaber E, Geibel C, Jeevan H S, Kirchner S, Loewenhaupt M, Schmalzl K, Schmidt W, Si Q and Steglich F 2011 Nat. Phys. 7 119
[76] Arndt J, Stockert O, Schmalzl K, Faulhaber E, Jeevan H S, Geibel C, Schmidt W, Loewenhaupt M and Steglich F 2011 Phys. Rev. Lett. 106 246401
[77] Vieyra H A, Oeschler N, Seiro S, Jeevan H S, Geibel C, Parker D and Steglich F 2011 Phys. Rev. Lett. 106 207001
[78] Kittaka S, Aoki Y, Shimura Y, Sakakibara T, Seiro S, Geibel C, Steglich F, Ikeda H and Machia K 2014 Phys. Rev. Lett. 112 067002
[79] Enayat M, Sun Z, Maldonado A, Suderow H, Seiro S, Geibel C, Wirth S, Steglich F and Wahl P 2016 Phys. Rev. B 93 045123
[80] Li Y, Liu M, Fu Z, Chen X, Yang F and Yang Y F 2018 Phys. Rev. Lett. 120 217001
[81] Millis A J, Monien H and Pines D 1990 Phys. Rev. B 42 167
[82] Monthoux P, Balatsky A V and Pines D 1991 Phys. Rev. Lett. 67 3448
[83] Monthoux P and Pines D 1992 Phys. Rev. Lett. 69 961
[84] Millis A J 1992 Phys. Rev. B 45 13047
[85] Monthoux P, Balatsky A V and Pines D 1992 Phys. Rev. B 46 14803
[86] Monthoux P and Pines D 1994 Phys. Rev. B 49 4261
[87] Monthoux P and Lonzarich G G 2002 Phys. Rev. B 66 224504
[88] Dolgov O V, Mazin I I, Parker D and Golubov A A 2009 Phys. Rev. B 79 060502(R)
[89] Yang Y F and Pines D 2014 Proc. Natl. Acad. Sci. USA 111 18178
[90] Min H, Hill J E, Sinitsyn N A, Sahu B R, Kleinman L and MacDonald A H 2006 Phys. Rev. B 74 165310
[91] Yao Y, Ye F, Qi X L, Zhang S C and Fang Z 2007 Phys. Rev. B 75 041401(R)
[92] Bang Y and Stewart G R 2017 J. Phys.: Condens. Matter 29 123003
[93] Kittaka S, Aoki Y, Shimura Y, Sakakibara T, Seiro S, Geibel C, Steglich F, Tsutsumi Y, Ikeda H and Machida K Phys. Rev. B 94 054514
[94] Maeno Y, Kittaka S, Nomura T, Yonezawa S and Ishida K 2012 J. Phys. Soc. Jpn. 81 011009
[95] Xiao D, Yao W and Niu Q 2007 Phys. Rev. Lett. 99 236809
[96] Rycerz A, Tworzydlo J and Beenakker C W J 2007 Nat. Phys. 3 172
[97] Van Harlingen D J 1995 Rev. Mod. Phys. 67 515
[98] Charpentier S, Galletti L, Kunakova G, Arpaia R, Song Y, Baghdadi R, Wang S M, Kalaboukhov A, Olsson E, Tafuri F, Golubev D, Linder J, Bauch T and Lombardi F 2017 Nat. Comm. 8 2019
[99] Schemm E R, Baumbach R E, Tobash P H, Ronning F, Bauer E D and Kapitulnik A 2015 Phys. Rev. B 91 140506(R)
[1] Temperature and doping dependent flat-band superconductivity on the Lieb-lattice
Feng Xu(徐峰), Lei Zhang(张磊), and Li-Yun Jiang(姜立运). Chin. Phys. B, 2021, 30(6): 067401.
[2] High-pressure elastic anisotropy and superconductivity of hafnium: A first-principles calculation
Cheng-Bin Zhang(张成斌), Wei-Dong Li(李卫东), Ping Zhang(张平), and Bao-Tian Wang(王保田). Chin. Phys. B, 2021, 30(5): 056202.
[3] Correlated insulating phases in the twisted bilayer graphene
Yuan-Da Liao(廖元达), Xiao-Yan Xu(许霄琰), Zi-Yang Meng(孟子杨), and Jian Kang(康健). Chin. Phys. B, 2021, 30(1): 017305.
[4] Doping effects of transition metals on the superconductivity of (Li,Fe)OHFeSe films
Dong Li(李栋), Peipei Shen(沈沛沛), Sheng Ma(马晟), Zhongxu Wei(魏忠旭), Jie Yuan(袁洁), Kui Jin(金魁), Li Yu(俞理), Fang Zhou(周放), Xiaoli Dong(董晓莉), and Zhongxian Zhao(赵忠贤). Chin. Phys. B, 2021, 30(1): 017402.
[5] Tip-induced superconductivity commonly existing in the family of transition-metal dipnictides MPn2
Meng-Di Zhang(张孟迪), Sheng Xu(徐升), Xing-Yuan Hou(侯兴元), Ya-Dong Gu(谷亚东), Fan Zhang(张凡), Tian-Long Xia(夏天龙), Zhi-An Ren(任治安), Gen-Fu Chen(陈根富), Ning Hao(郝宁), and Lei Shan(单磊). Chin. Phys. B, 2021, 30(1): 017304.
[6] Evidence for topological superconductivity: Topological edge states in Bi2Te3/FeTe heterostructure
Bin Guo(郭斌), Kai-Ge Shi(师凯歌), Hai-Lang Qin(秦海浪), Liang Zhou(周良), Wei-Qiang Chen(陈伟强), Fei Ye(叶飞), Jia-Wei Mei(梅佳伟), Hong-Tao He(何洪涛), Tian-Luo Pan(潘天洛), Gan Wang(王干). Chin. Phys. B, 2020, 29(9): 097403.
[7] Anisotropy of Ca0.73La0.27(Fe0.96Co0.04)As2 studied by torque magnetometry
Ya-Lei Huang(黄亚磊), Run Yang(杨润), Pei-Gang Li(李培刚), Hong Xiao(肖宏). Chin. Phys. B, 2020, 29(9): 097405.
[8] Flattening is flattering: The revolutionizing 2D electronic systems
Baojuan Dong(董宝娟), Teng Yang(杨腾), Zheng Han(韩拯). Chin. Phys. B, 2020, 29(9): 097307.
[9] Electrical and thermoelectric study of two-dimensional crystal of NbSe2
Xin-Qi Li(李新祺), Zhi-Lin Li(李治林), Jia-Ji Zhao(赵嘉佶), Xiao-Song Wu(吴孝松). Chin. Phys. B, 2020, 29(8): 087402.
[10] Anomalous spectral weight transfer in the nematic state of iron-selenide superconductor
C Cai(蔡淙), T T Han(韩婷婷), Z G Wang(王政国), L Chen(陈磊), Y D Wang(王宇迪), Z M Xin(信子鸣), M W Ma(马明伟), Yuan Li(李源), Y Zhang(张焱). Chin. Phys. B, 2020, 29(7): 077401.
[11] Time-dependent Ginzburg-Landau equations for multi-gap superconductors
Minsi Li(李敏斯), Jiahong Gu(古家虹), Long Du(杜龙), Hongwei Zhong(钟红伟), Lijuan Zhou(周丽娟), Qinghua Chen(陈庆华). Chin. Phys. B, 2020, 29(3): 037401.
[12] A simple tight-binding approach to topological superconductivity in monolayer MoS2
H Simchi. Chin. Phys. B, 2020, 29(2): 027401.
[13] Progress on band structure engineering of twisted bilayer and two-dimensional moirè heterostructures
Wei Yao(姚维), Martin Aeschlimann, and Shuyun Zhou(周树云). Chin. Phys. B, 2020, 29(12): 127304.
[14] Structural and electrical transport properties of Cu-doped Fe1 -xCuxSe single crystals
He Li(李贺), Ming-Wei Ma(马明伟), Shao-Bo Liu(刘少博), Fang Zhou(周放), and Xiao-Li Dong(董晓莉). Chin. Phys. B, 2020, 29(12): 127404.
[15] A review of experimental advances in twisted graphene moirè superlattice
Yanbang Chu(褚衍邦), Le Liu(刘乐), Yalong Yuan(袁亚龙), Cheng Shen(沈成), Rong Yang(杨蓉), Dongxia Shi(时东霞), Wei Yang(杨威), and Guangyu Zhang(张广宇). Chin. Phys. B, 2020, 29(12): 128104.
No Suggested Reading articles found!