CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Effects of layer stacking and strain on electronic transport in two-dimensional tin monoxide |
Yanfeng Ge(盖彦峰), Yong Liu(刘永) |
State Key Laboratory of Metastable Materials Science and Technology and Key Laboratory for Microstructural Material Physics of Hebei Province, School of Science, Yanshan University, Qinhuangdao 066004, China |
|
|
Abstract Tin monoxide (SnO) is an interesting two-dimensional material because it is a rare oxide semiconductor with bipolar conductivity. However, the lower room temperature mobility limits the applications of SnO in the future. Thus, we systematically investigate the effects of different layer structures and strains on the electron-phonon coupling and phonon-limited mobility of SnO. The A2u phonon mode in the high-frequency region is the main contributor to the coupling with electrons for different layer structures. Moreover, the orbital hybridization of Sn atoms existing only in the bilayer structure changes the conduction band edge and conspicuously decreases the electron-phonon coupling, and thus the electronic transport performance of the bilayer is superior to that of other layers. In addition, the compressive strain of ε=-1.0% in the monolayer structure results in a conduction band minimum (CBM) consisting of two valleys at the Γ point and along the M-Γ line, and also leads to the intervalley electronic scattering assisted by the Eg(-1) mode. However, the electron-phonon coupling regionally transferring from high frequency A2u to low frequency Eg(-1) results in little change of mobility.
|
Received: 07 January 2019
Revised: 02 May 2019
Accepted manuscript online:
|
PACS:
|
51.50.+v
|
(Electrical properties)
|
|
63.20.kd
|
(Phonon-electron interactions)
|
|
63.20.dk
|
(First-principles theory)
|
|
73.90.+f
|
(Other topics in electronic structure and electrical properties of surfaces, interfaces, thin films, and low-dimensional structures)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11747054), the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 2018M631760), the Project of Hebei Educational Department, China (Grant Nos. ZD2018015 and QN2018012), and the Advanced Postdoctoral Programs of Hebei Province, China (Grant No. B2017003004). |
Corresponding Authors:
Yong Liu
E-mail: yongliu@ysu.edu.cn
|
Cite this article:
Yanfeng Ge(盖彦峰), Yong Liu(刘永) Effects of layer stacking and strain on electronic transport in two-dimensional tin monoxide 2019 Chin. Phys. B 28 077104
|
[1] |
Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A 2004 Science 306 666
|
[2] |
Wang C, Liu X, Wang Z, Zhao M, He H and Zou J 2018 Chin. Phys. B 27 118106
|
[3] |
Molle A, Goldberger J, Houssa M, Xu Y, Zhang S C and Akinwande D 2017 Nat. Mater. 16 163
|
[4] |
Mannix A J, Kiraly B, Hersam M C and Guisinger N P 2017 Nat. Rev. Chem. 1 0014
|
[5] |
Lew Yan Voon L C 2015 Chin. Phys. B 24 87309
|
[6] |
Chhowalla M, Shin H S, Eda G, Li L J, Loh K P and Zhang H 2013 Nat. Chem. 5 263
|
[7] |
Li S L, Tsukagoshi K, Orgiu E and Samori P 2016 Chem. Soc. Rev. 45 118
|
[8] |
Zhou X, Gan L, Zhang Q, Xiong X, Li H, Zhong Z, Han J and Zhai T 2016 J. Mater. Chem. C 4 2111
|
[9] |
Liu Y, Weiss N O, Duan X, Cheng H C, Huang Y and Duan X 2016 Nat. Rev. Mater. 1 16042
|
[10] |
Anasori B, Lukatskaya M R and Gogotsi Y 2017 Nat. Rev. Mater. 2 16098
|
[11] |
Mas-Balleste R, Gomez-Navarro C, Gomez-Herrero J and Zamora F 2011 Nanoscale 3 20
|
[12] |
Gupta A, Sakthivel T and Seal S 2015 Prog. Mater. Sci. 73 44
|
[13] |
Yang J and Y Lu Y 2017 Chin. Phys. B 26 034201
|
[14] |
Wang F 2017 Chin. Phys. B 26 034202
|
[15] |
Cocemasov A I, Isacova C I and Nika D L 2018 Chin. Phys. B 27 56301
|
[16] |
Zhang Q, Zhang H and Cheng X L 2018 Chin. Phys. B 27 27301
|
[17] |
Radisavljevic B, Radenovic A, Brivio J, Giacometti V and Kis A 2011 Nat. Nanotechnol. 6 147
|
[18] |
Geim A K and Grigorieva I V 2013 Nature 499 419
|
[19] |
Saji K J, Tian K, Snure M and Tiwari A 2016 Adv. Electron. Mater. 2 1500453
|
[20] |
Xiao D, Liu G B, Feng W, Xu X and Yao W 2012 Phys. Rev. Lett. 108 196802
|
[21] |
Zhou X, Zhang Q, Gan L, Li H, Xiong J and Zhai T 2016 Adv. Sci. 3 1600177
|
[22] |
De D, Manongdo J, See S, Zhang V, Guloy A and Peng H 2013 Nanotechnology 24 025202
|
[23] |
Song H S, Li S L, Gao L, Xu Y, Ueno K, Tang J, Cheng Y B and Tsukagoshi K 2013 Nanoscale 5 9666
|
[24] |
Su G, Hadjiev V G, Loya P E, Zhang J, Lei S, Maharjan S, Dong P, Ajayan P M, Lou J and Peng H 2015 Nano Lett. 15 506
|
[25] |
Huang Y, Sutter E, Sadowski J T, Cotlet M, Monti O L, Racke D A, Neupane M R, Wickramaratne D, Lake R K, Parkinson B A and Sutter P 2014 ACS Nano 8 10743
|
[26] |
Su Y, Ebrish M A, Olson E J and Koester S J 2013 Appl. Phys. Lett. 103 263104
|
[27] |
Zhou X, Gan L, Tian W, Zhang Q, Jin S, Li H, Bando Y, Golberg D and Zhai T 2015 Adv. Mater. 27 8035
|
[28] |
Pan T S, De D, Manongdo J, Guloy A M, Hadjiev V G, Lin Y and Peng H B 2013 Appl. Phys. Lett. 103 093108
|
[29] |
Kamal C, Chakrabarti A and Ezawa M 2016 Phys. Rev. B 93 125428
|
[30] |
Chowdhury C, Karmakar S and Datta A 2017 J. Phys. Chem. C 121 7615
|
[31] |
Sinsermsuksakul P, Chakraborty R, Kim S B, Heald S M, Buonassisi T and Gordon R G 2012 Chem. Mater. 24 4556
|
[32] |
Xia J, Li X Z, Huang X, Mao N, Zhu D D, Wang L, Xu H and Meng X M 2016 Nanoscale 8 2063
|
[33] |
Micoulaut M, Wenic W and Wuttig M 2008 Phys. Rev. B 78 224209
|
[34] |
Wang R Y, Caldwell M A, Jeyasingh R G D, Aloni S, Shelby R M, Wong H S P and Milliron D J 2011 J. Appl. Phys. 109 113506
|
[35] |
Chung K M, Wamwangi D, Woda M, Wuttig M and Bensch W 2008 J. Appl. Phys. 103 083523
|
[36] |
Huang Y, Ling C, Liu H, Wang S and Geng B 2014 J. Phys. Chem. C 118 9251
|
[37] |
Wang H and Qian X 2017 2D Mater. 4 015042
|
[38] |
Wu M and Zeng X C 2016 Nano Lett. 16 3236
|
[39] |
Fei R, Li W, Li J and Yang L 2015 Appl. Phys. Lett. 107 173104
|
[40] |
Gomes L C, Carvalho A and Castro Neto A H 2015 Phys. Rev. B 92 214103
|
[41] |
Hsieh T H, Lin H, Liu J, Duan W, Bansil A and Fu L 2012 Nat. Commun. 3 982
|
[42] |
Yang G, Liu J, Fu L, Duan W and Liu C 2014 Phys. Rev. B 89 085312
|
[43] |
Liu J, Qian X and Fu L 2015 Nano Lett. 15 2657
|
[44] |
Seixas L, Rodin A S, Carvalho A and Castro Neto A H 2016 Phys. Rev. Lett. 116 206803
|
[45] |
Watson G W 2001 J. Chem. Phys. 114 758
|
[46] |
Izumi F 1981 J. Solid State Chem. 38 381
|
[47] |
Moreno M S and Mercader R C 1994 Phys. Rev. B 50 9875
|
[48] |
Zhou W and Umezawa N 2015 Phys. Chem. Chem. Phys. 17 17816
|
[49] |
Hosono H, Ogo Y, Yanagi H and Kamiya T 2011 Electrochem. Solid State Lett. 14 13
|
[50] |
Varley J B, Schleife A, Janotti A and Van de Walle C G 2013 Appl. Phys. Lett. 103 082118
|
[51] |
Caraveo-Frescas J A, Nayak P K, Al-Jawhari H A, Granato D B, Schwingenschlogl U and Alshareef H N 2013 ACS Nano 7 5160
|
[52] |
Lefebvre I, Szymanski M, Olivier-Fourcade J and Jumas J 1998 Phys. Rev. B 58 1896
|
[53] |
Pannetier J and Denes G 1980 Acta Crystallogr. 36 2763
|
[54] |
Pan X Q and Fu L 2001 J. Electroceram. 7 35
|
[55] |
Togo A, Oba F, Tanaka I and Tatsumi K 2006 Phys. Rev. B 74 195128
|
[56] |
Ogo Y, Hiramatsu H, Nomura K, Yanagi H, Kamiya T, Hirano M and Hosono H 2008 Appl. Phys. Lett. 93 032113
|
[57] |
Liang L Y, Liu Z M, Cao H T, Yu Z, Shi Y Y, Chen A H, Zhang H Z, Fang Y Q and Sun X L 2010 J. Electrochem. Soc. 157 598
|
[58] |
Quackenbush N F, Allen J P, Scanlon D O, Sallis S, Hewlett J A, Nandur A S, Chen B, Smith K E, Weiland C, Fischer D A, Woicik J C, White B E, Watson G W and Piper L F J 2013 Chem. Mater. 25 3114
|
[59] |
Thomas G 1997 Nature 389 907
|
[60] |
Ou C W, Dhananjay Ho Z Y, Chuang Y C, Cheng S S and Wu M C 2008 Appl. Phys. Lett. 92 122113
|
[61] |
Lee H N, Kim H J and Kim C K 2010 Jpn. J. Appl. Phys. 49 020202
|
[62] |
Nomura K, Kamiya T and Hosono H 2011 Adv. Mater. 23 3431
|
[63] |
Qiang L, Liu W, Pei Y, Wang G and Yao R 2017 Solid-State Electronics 129 163
|
[64] |
Wang H, Yu L L, Lee Y H, Shi Y M, Hsu A, Chin M L, Li L J, Dubey M, Kong J and Palacios T 2012 Nano Lett. 12 4674
|
[65] |
Das S, Chen H Y, Penumatcha A V and Appenzeller J 2013 Nano Lett. 13 100
|
[66] |
Li L, Yu Y, Ye G L, Ge Q, Ou X, Wu H, Feng D, Chen X H and Zhang Y 2014 Nat. Nanotechnology 9 372
|
[67] |
He Y, Sobhani A, Lei S, Zhang Z, Gong Y, Jin Z, Zhou W, Yang Y, Zhang Y, Wang X, Yakobson B, Vajtai R, Halas N J, Li B, Xie E and Ajayan P 2016 Adv. Mater. 28 5126
|
[68] |
Chen X D, Xin W, Jiang W S, Liu Z B, Chen Y and Tian J G 2016 Adv. Mater. 28 2563
|
[69] |
Xin W, Chen X D, Liu Z B, Jiang W S, Gao X G, Jiang X Q, Chen Y and Tian J G 2016 Adv. Optical Mater. 4 1703
|
[70] |
Cao Y, Fatemi V, Demir A, Fang S, Tomarken S L, Luo J Y, Sanchez-Yamagishi J D, Watanabe K, Taniguchi T, Kaxiras E, Ashoori R C and Jarillo-Herrero P 2018 Nature 556 80
|
[71] |
Cao Y, Fatemi V, Fang S, Watanabe K, Taniguchi T, Kaxiras E and Jarillo-Herrero P 2018 Nature 556 43
|
[72] |
Bissett M A, Tsujia M and Ago H 2014 Phys. Chem. Chem. Phys. 16 11124
|
[73] |
Wu Y, Xia W, Gao W, Ren W and Zhang P 2017 Phys. Rev. Appl. 8 034007
|
[74] |
Duerloo K A N, Li Y and Reed E J 2014 Nat. Commun. 5 4214
|
[75] |
Rodin A S, Carvalho A and Castro Neto A H 2014 Phys. Rev. Lett. 112 176801
|
[76] |
Zhu T and Ertekin E 2015 Phys. Rev. B 91 205429
|
[77] |
Ge Y, Wan W, Feng W, Xiao D and Yao Y 2014 Phys. Rev. B 90 035414
|
[78] |
Qiao J, Kong X, Hu Z X, Yang F and Ji W 2014 Nat. Commun. 5 4475
|
[79] |
Allen P B 1978 Phys. Rev. B 17 3725
|
[80] |
Gonze X 1997 Phys. Rev. B 55 10337
|
[81] |
Gonze X and Lee C 1997 Phys. Rev. B 55 10355
|
[82] |
Gonze X, Rignanese G M, Verstraete M, Beuken J M, Pouillon Y, Caracas R, Jollet F, Torrent M, Zerah G, Mikami M, Ghosez P, Veithen M, Raty J Y, Olevano V, Bruneval F, Reining L, Godby R, Onida G, Hamann D R and Allan D C 2005 Z. Kristallogr. 220 558
|
[83] |
Gonze X, Amadon B, Anglade P M, et al. 2009 Comput. Phys. Commun. 180 2582
|
[84] |
Hartwigsen C, Goedecker S and Hutter J 1998 Phys. Rev. B 58 3641
|
[85] |
Baroni S, Gironcoli S D, Corso A D and Giannozzi P 2001 Rev. Mod. Phys. 73 515
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|