Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(3): 037503    DOI: 10.1088/1674-1056/27/3/037503
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Formation of unusual Cr5+ charge state in CaCr0.5Fe0.5O3 perovskite

Jian-Hong Dai(戴建洪)1,2, Qing Zhao(赵庆)1, Qian Sun(孙倩)1, Shuo Zhang(张硕)3, Xiao Wang(王潇)1,2, Xu-Dong Shen(申旭东)1,2, Zhe-Hong Liu(刘哲宏)1,2, Xi Shen(沈希)1,2, Ri-Cheng Yu(禹日成)1, Ting-Shan Chan(詹丁山)4, Lun-Xiong Li(李论雄)5, Guang-Hui Zhou(周光辉)6, Yi-feng Yang(杨义峰)1,2, Chang-Qing Jin(靳常青)1,2, You-Wen Long(龙有文)1,2
1 Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
2 School of Physics, University of Chinese Academy of Sciences, Beijing 100049, China;
3 Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201203, China;
4 "National" Synchrotron Radiation Research Center, 101 Hsin-Ann Road, Hsinchu 30076, Taiwan, China;
5 Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou 510631, China;
6 Department of Physics and Synergetic Innovation Center for Quantum Effects and Applications of Hunan, Hunan Normal University, Changsha 410081, China
Abstract  

A new oxide CaCr0.5Fe0.5O3 was prepared under high pressure and temperature conditions. It crystallizes in a B-site disordered Pbnm perovskite structure. The charge combination is determined to be Cr5+/Fe3+ with the presence of unusual Cr5+ state in octahedral coordination, although Cr4+ and Fe4+ occur in the related perovskites CaCrO3 and CaFeO3. The randomly distributed Cr5+ and Fe3+ spins lead to short-range ferromagnetic coupling, whereas an antiferromagnetic phase transition takes place near 50 K due to the Fe3+-O-Fe3+ interaction. In spite of the B-site Cr5+/Fe3+ disorder, the compound exhibits electrical insulating behavior. First-principles calculations further demonstrate the formation of CaCr0.55+Fe0.53+O3 charge combination, and the electron correlation effect of Fe3+ plays an important role for the insulting ground state. CaCr0.5Fe0.5O3 provides the first Cr5+ perovskite system with octahedral coordination, opening a new avenue to explore novel transition-metal oxides with exotic charge states.

Keywords:  high pressure synthesis      perovskite      valence state  
Received:  30 January 2018      Revised:  09 February 2018      Accepted manuscript online: 
PACS:  75.10.-b (General theory and models of magnetic ordering)  
  61.05.cj (X-ray absorption spectroscopy: EXAFS, NEXAFS, XANES, etc.)  
  71.45.Gm (Exchange, correlation, dielectric and magnetic response functions, plasmons)  
  62.50.-p (High-pressure effects in solids and liquids)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 11574378, 51772324, and 61404052), the National Basic Research Program of China (Grant No. 2014CB921500), and the Chinese Academy of Sciences (Grant Nos. YZ201555, QYZDB-SSW-SLH013, GJHZ1773, and XDB07030300).

Corresponding Authors:  Yi-feng Yang, You-Wen Long     E-mail:  yifeng@iphy.ac.cn;ywlong@iphy.ac.cn

Cite this article: 

Jian-Hong Dai(戴建洪), Qing Zhao(赵庆), Qian Sun(孙倩), Shuo Zhang(张硕), Xiao Wang(王潇), Xu-Dong Shen(申旭东), Zhe-Hong Liu(刘哲宏), Xi Shen(沈希), Ri-Cheng Yu(禹日成), Ting-Shan Chan(詹丁山), Lun-Xiong Li(李论雄), Guang-Hui Zhou(周光辉), Yi-feng Yang(杨义峰), Chang-Qing Jin(靳常青), You-Wen Long(龙有文) Formation of unusual Cr5+ charge state in CaCr0.5Fe0.5O3 perovskite 2018 Chin. Phys. B 27 037503

[1] Ovsyannikov S V, Bykov M, Bykova E, Kozlenko D P, Tsirlin A A, Karkin A E, Shchennikov V V, Kichanov S E, Gou H Y, Abakumov A M, Egoavil R, Verbeeck J, McCammon C, Dyadkin V, Chernyshov D, van Smaalen S and Dubrovinsky L S 2016 Nat. Chem. 8 501
[2] Lavina B, Dera P, Kim E, Meng Y, Downs R T, Weck P F, Sutton S R and Zhao Y 2011 Proc. Natl. Acad. Sci. USA 108 17281
[3] Long Y W, Hayashi N, Saito T, Azuma M, Muranaka S and Shimakawa Y 2009 Nature 458 07816
[4] Long Y W, Kawakami T W, Chen T, Saito T, Watanuki T, Nakakura Y, Liu Q Q, Jin C Q and Shimakawa Y 2012 Chem. Mater. 24 2235
[5] Long Y W and Shimakawa Y 2010 New J. Phys. 12 063029
[6] Takano M, Nakanishi N, Takeda Y, Naka S and Takada T 1977 Mat. Res. Bull. 12 923
[7] Woodward P M, Cox D E, Moshopoulou E, Sleight A W and Morimoto S 2000 Phys. Rev. B 62 844
[8] Kawasaki S, Takano M and Takeda Y 1996 J. Solid State Chem. 121 174
[9] Long Y W, Kaneko Y, Ishiwata S, Tokunaga Y, Matsuda T, Wadati H, Tanaka Y, Shin S, Tokura Y and Taguchi Y 2012 Phys. Rev. B 86 064436
[10] Seki H, Hosaka Y, Saito T, Mizumaki M and Shimakawa Y 2016 Angew. Chem. Int. Ed. 55 1360
[11] Zhou, J. S, Jin C Q, Long Y W, Yang L X and Goodenough J B 2006 Phys. Rev. Lett. 96 046408
[12] Long Y W, Yang L, Lv Y, Liu Q, Jin C, Zhou J and Goodenough J B 2011 J. Phys.:Condens. Matter. 23 355601
[13] Komarek C, Möller T, Isobe M, Drees Y, Ulbrich H, Azuma M, Fernández-Díaz M T, Senyshyn A, Hoelzel M, André G, Ueda Y, Grüninger M and Braden M 2011 Phys. Rev. B 84 125114
[14] Ortega-San-Martin L, Williams A J, Rodgers J, Attfield J P, Heymann G and Huppertz H 2007 Phys. Rev. Lett. 99 255701
[15] Lee K W and Pickett W E 2009 Phys. Rev. B 80 125133
[16] Arévalo-Lópezá M, Dos santos-García A J and Alario-Franco M á 2009 Inorg. Chem. 48 5434
[17] Cheng J, Kweon K E, Larregola S A, Ding Y, Shirako Y, Marshall L G, Li Z Y, Li X, dos Santos A M, Suchomel M R, Matsubayashi K, Uwatoko Y, Hwang G S, Goodenough J B and Zhou J S 2015 Proc. Natl. Acad. Sci. USA 112 1670
[18] Yu, R, Hojo H, Watanuki T, Mizumaki M, Mizokawa T, Oka K, Kim H, Machida A, Sakaki K, Nakamura Y, Agui A, Mori D, Inaguma Y, Schlipf M, Rushchanskii K Z, Ležaić M, Matsuda M, Ma J, Calder S, Isobe M, Ikuhara Y and Azuma M 2015 J. Am. Chem. Soc. 137 12719
[19] Jiménez E, Isasi J and Sáez-Puche R J 2000 Alloy. Compd. 312 53
[20] Tsirlin A A, Rabie M G, Efimenko A, Hu Z, Saez-Puche R and Tjeng L H 2014 Phys. Rev. B 90 085106
[21] Sáez-Puche R, Jiménez E, Isasi J, Fernández-Díaz M T and García-Muñoz J L 2003 J. Solid State Chem. 171 161
[22] Long Y W, Liu Q, Lv Y, Yu R and Jin C 2011 Phys. Rev. B 83 024416
[23] Long Y W, Yang L X, Yu Y, Li F Y, Yu R C and Jin C Q 2007 Phys. Rev. B 75 104402
[24] Bhobe P A, Chainani A, Taguchi M, Eguchi R, Matsunami M, Ohtsuki T, Ishizaka K, Okawa M, Oura M, Senba Y, Ohashi H, Isobe M, Ueda Y and Shin S 2011 Phys. Rev. B 83 165132
[25] Takano M, Nasu S, Abe T, Yamamoto K, Endo S, Takeda Y and Goodenough J B 1991 Phys. Rev. Lett. 67 3267
[26] Larson A C and Von Dreele R B Report No. LAUR 86-748 (Los Alamos National Laboratory Los Alamos NM 1994)
[27] Blaha P, Schwarz K, Madsen G K H, Kvasnicka D and Luitz J 2013 WIEN2K:An Augmented Plane Wave + Local Orbitals Program for Calculating Crystal Properties (Karlheinz Schwarz, Technische Universitat Wien, Wien, Austria 2013).
[28] Lee K W and Ahn K H 2012 Phys. Rev. B 85 224404
[29] Croft M, Sills D, Greenblatt M, Lee C, Cheong S W, Ramanujachary K V and Tran D 1997 Phys. Rev. B 55 8726
[30] Poltavets V V, Croft M and Greenblatt M 2006 Phys. Rev. B 74 125103
[31] Goodenough, J. B 1955 Phys. Rev. 100 564
[32] Kanamori J 1959 J. Phys. Chem. Solids 10 87
[33] Xu W M, Naaman O, Rozenberg G K, Pasternak M P and Taylor R D 2001 Phys. Rev. B 64 094411
[34] Pavarini E, Biermann S, Poteryaev A, Lichtenstein A I, Georges A and Andersen O K 2004 Phys. Rev. Lett. 92 176403
[35] Ulrich C, Gössling A, Grüninger M, Guennou M, Roth H, Cwik M, Lorenz T, Khaliullin G and Keimer B 2006 Phys. Rev. Lett. 97 157401
[36] Khaliullin G and Maekawa S 2000 Phys. Rev. Lett. 85 3950
[37] Lan Y C, Chen X L and He M 2003 J. Alloys Compd. 354 95
[38] Eremin M V, Deisenhofer J, Eremina R M, Teyssier J, van der Marel D and Loidl A 2011 Phys. Rev. B 84 212407
[39] Streltsov S V, Korotin M A, Anisimov V I and Khomskii D I 2008 Phys. Rev. B 78 054425
[40] Feng H L, Arai M, Matsushita Y, Tsujimoto Y, Guo Y, Sathish C I, Wang X, Yuan Y H, Tanaka M and Yamaura K 2014 J. Am. Chem. Soc. 136 3326
[41] Deng H S, Liu M, Dai J H, Hu Z W, Kuo C, Yin Y Y, Yang J Y, Wang X, Zhao Q, Xu Y J, Fu Z M, Cai J W, Guo H Z, Jin K J, Pi T, Soo Y, Zhou G H, Cheng J G, Chen K, Ohresser P, Yang Y F, Jin C Q, Tjeng L H and Long Y W 2016 Phys. Rev. B 94 024414
[1] Understanding the synergistic effect of mixed solvent annealing on perovskite film formation
Kun Qian(钱昆), Yu Li(李渝), Jingnan Song(宋静楠), Jazib Ali, Ming Zhang(张明), Lei Zhu(朱磊), Hong Ding(丁虹), Junzhe Zhan(詹俊哲), and Wei Feng(冯威). Chin. Phys. B, 2021, 30(6): 068103.
[2] In-plane oriented CH3NH3PbI3 nanowire suppression of the interface electron transfer to PCBM
Tao Wang(王涛), Zhao-Hui Yu(于朝辉), Hao Huang(黄昊), Wei-Guang Kong(孔伟光), Wei Dang(党伟), and Xiao-Hui Zhao(赵晓辉). Chin. Phys. B, 2021, 30(6): 066801.
[3] Low-dimensional phases engineering for improving the emission efficiency and stability of quasi-2D perovskite films
Yue Wang(王月), Zhuang-Zhuang Ma(马壮壮), Ying Li(李营), Fei Zhang(张飞), Xu Chen(陈旭), and Zhi-Feng Shi (史志锋). Chin. Phys. B, 2021, 30(6): 067802.
[4] Performance and stability-enhanced inorganic perovskite light-emitting devices by employing triton X-100
Ao Chen(陈翱), Peng Wang(王鹏), Tao Lin(林涛), Ran Liu(刘然), Bo Liu(刘波), Quan-Jun Li(李全军), and Bing-Bing Liu(刘冰冰). Chin. Phys. B, 2021, 30(4): 048506.
[5] Improved efficiency and stability of perovskite solar cells with molecular ameliorating of ZnO nanorod/perovskite interface and Mg-doping ZnO
Zhenyun Zhang(张振雲), Lei Xu(许磊), and Junjie Qi(齐俊杰). Chin. Phys. B, 2021, 30(3): 038801.
[6] Stability and optoelectronic property of low-dimensional organic tin bromide perovskites
J H Lei(雷军辉), Q Tang(汤琼), J He(何军), and M Q Cai(蔡孟秋). Chin. Phys. B, 2021, 30(3): 038102.
[7] Tuning magnetic anisotropy by interfacial engineering in La2/3Sr1/3Co1-xMnxO2.5+δ/La2/3Sr1/3MnO3/La2/3Sr1/3Co1-xMnxO2.5+δ trilayers
Hai-Lin Huang(黄海林), Liang Zhu(朱亮), Hui Zhang(张慧), Jin-E Zhang(张金娥), Fu-Rong Han(韩福荣), Jing-Hua Song(宋京华), Xiaobing Chen(陈晓冰), Yuan-Sha Chen(陈沅沙), Jian-Wang Cai(蔡建旺), Xue-Dong Bai(白雪冬), Feng-Xia Hu(胡凤霞), Bao-Gen Shen(沈保根), Ji-Rong Sun(孙继荣). Chin. Phys. B, 2020, 29(9): 097402.
[8] Highly efficient bifacial semitransparent perovskite solar cells based on molecular doping of CuSCN hole transport layer
Shixin Hou(侯世欣), Biao Shi(石标), Pengyang Wang(王鹏阳), Yucheng Li(李玉成), Jie Zhang(张杰), Peirun Chen(陈沛润), Bingbing Chen(陈兵兵), Fuhua Hou(侯福华), Qian Huang(黄茜), Yi Ding(丁毅), Yuelong Li(李跃龙), Dekun Zhang(张德坤), Shengzhi Xu(许盛之), Ying Zhao(赵颖), Xiaodan Zhang(张晓丹). Chin. Phys. B, 2020, 29(7): 078801.
[9] Photoresponsive characteristics of thin film transistors with perovskite quantum dots embedded amorphous InGaZnO channels
Mei-Na Zhang(张美娜), Yan Shao(邵龑), Xiao-Lin Wang(王晓琳), Xiaohan Wu(吴小晗), Wen-Jun Liu(刘文军), Shi-Jin Ding(丁士进). Chin. Phys. B, 2020, 29(7): 078503.
[10] SiO2 nanoparticle-regulated crystallization of lead halide perovskite and improved efficiency of carbon-electrode-based low-temperature planar perovskite solar cells
Zerong Liang(梁泽荣), Bingchu Yang(杨兵初), Anyi Mei(梅安意), Siyuan Lin(林思远), Hongwei Han(韩宏伟), Yongbo Yuan(袁永波), Haipeng Xie(谢海鹏), Yongli Gao(高永立), Conghua Zhou(周聪华). Chin. Phys. B, 2020, 29(7): 078401.
[11] Magnetic properties of La2CuMnO6 double perovskite ceramic investigated by Monte Carlo simulations
S Mtougui, I EL Housni, N EL Mekkaoui, S Ziti, S Idrissi, H Labrim, R Khalladi, L Bahmad. Chin. Phys. B, 2020, 29(5): 056101.
[12] Low temperature magnetism in the rare-earth perovskite GdScO3
Jie-Ming Sheng(盛洁明), Xu-Cai Kan(阚绪材), Han Ge(葛晗), Pei-Qian Yuan(袁培骞), Lei Zhang(张磊), Nan Zhao(赵南), Zong-Mei Song(宋宗美), Yuan-Yin Yao(姚远寅), Ji-Ning Tang(唐霁宁), Shan-Min Wang(王善民), Ming-Liang Tian(田明亮), Xin Tong(童欣), Liu-Suo Wu(吴留锁). Chin. Phys. B, 2020, 29(5): 057503.
[13] Two-step processed efficient perovskite solar cells via improving perovskite/PTAA interface using solvent engineering in PbI2 precursor
Cao-Yu Long(龙操玉), Ning Wang(王宁), Ke-Qing Huang(黄可卿), Heng-Yue Li(李恒月), Biao Liu(刘标), Jun-Liang Yang(阳军亮). Chin. Phys. B, 2020, 29(4): 048801.
[14] Theoretical investigation of halide perovskites for solar cell and optoelectronic applications
Jingxiu Yang(杨竞秀), Peng Zhang(张鹏), Jianping Wang(王建平), and Su-Huai Wei(魏苏淮)†. Chin. Phys. B, 2020, 29(10): 108401.
[15] Effect of source temperature on phase and metal–insulator transition temperature of vanadium oxide films grown by atomic layer deposition
Bingheng Meng(孟兵恒), Dengkui Wang(王登魁)†, Deshuang Guo(郭德双), Juncheng Liu(刘俊成), Xuan Fang(方铉), Jilong Tang(唐吉龙), Fengyuan Lin(林逢源), Xinwei Wang(王新伟), Dan Fang(房丹), and Zhipeng Wei(魏志鹏)‡. Chin. Phys. B, 2020, 29(10): 107102.
No Suggested Reading articles found!